Skip to main content
Log in

Optimizing the fusion level for lenke 5C adolescent idiopathic scoliosis: is the S-line a validated and reproducible tool to predict coronal decompensation?

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To validate the predictability of S-line in Lenke 5C patients.

Methods

Lenke 5C patients with a minimum 2-year follow-up and with the lowest instrumented vertebra (LIV) at lower end vertebra were included. The S-line was defined as a line connecting the centers of concave-side pedicles of upper instrumented vertebra (UIV) and LIV on baseline films. The S-line tilt to right was defined as positive S-line status (S-line +) and tilt to left as S-line − status. Statistical analysis was performed between different subgroups.

Results

Among the 92 patients, 69 patients had a left lumbar curve and 23 patients had a right lumbar curve. For left curves, the S-line + status had a significantly higher incidence of both proximal and distal decompensation. However, for right curves, the S-line − status was the risk factor. Thus, we modified the definition of S-line: The value of S-line tilt for right curves was opposite to that for left curves. Patients with modified S-line + showed a significantly higher incidence of both proximal and distal decompensation in Lenke 5C patients with both left and right curves (p < 0.001 and p = 0.010). In UEV group, patients with modified S-line + showed significantly higher incidence of proximal decompensation (P = 0.001). However, in UEV-1 group, the incidence of proximal decompensation was not statistically affected by modified S-line + (P = 0.281).

Conclusion

Modified S-line + is a validated risk factor that predisposed to post-operative coronal decompensation in Lenke 5C AIS patients. Selecting UIV at one level caudal to UEV could be a possible solution if the modified S-line was positive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kadoury S, Cheriet F, Beauséjour M, Stokes IA, Parent S, Labelle H (2009) A three-dimensional retrospective analysis of the evolution of spinal instrumentation for the correction of adolescent idiopathic scoliosis. Eur Spine J 18(1):23–37. https://doi.org/10.1007/s00586-008-0817-4

    Article  PubMed  Google Scholar 

  2. Hattori T, Sakaura H, Iwasaki M, Nagamoto Y, Yoshikawa H, Sugamoto K (2011) In vivo three-dimensional segmental analysis of adolescent idiopathic scoliosis. Eur Spine J 20(10):1745–1750. https://doi.org/10.1007/s00586-011-1869-4

    Article  PubMed  PubMed Central  Google Scholar 

  3. Li J, Hwang SW, Shi Z, Yan N, Yang C, Wang C, Zhu X, Hou T, Li M (2011) Analysis of radiographic parameters relevant to the lowest instrumented vertebrae and postoperative coronal balance in Lenke 5C patients. Spine 36(20):1673–1678. https://doi.org/10.1097/BRS.0b013e3182091fba

    Article  PubMed  Google Scholar 

  4. Satake K, Lenke LG, Kim YJ, Bridwell KH, Blanke KM, Sides B, Steger-May K (2005) Analysis of the lowest instrumented vertebra following anterior spinal fusion of thoracolumbar/lumbar adolescent idiopathic scoliosis: can we predict post-operative disk wedging? Spine 30(4):418–426. https://doi.org/10.1097/01.brs.0000153342.89478.d

    Article  PubMed  Google Scholar 

  5. Betz RR, Harms J, Clements DH 3rd, Lenke LG, Lowe TG, Shufflebarger HL, Jeszenszky D, Beele B (1999) Comparison of anterior and posterior instrumentation for correction of adolescent thoracic idiopathic scoliosis. Spine 24(3):225–239. https://doi.org/10.1097/00007632-199902010-00007

    Article  CAS  PubMed  Google Scholar 

  6. Li M, Ni J, Fang X, Liu H, Zhu X, He S, Gu S, Wang X (2009) Comparison of selective anterior versus posterior screw instrumentation in Lenke5C adolescent idiopathic scoliosis. Spine 34(11):1162–1166. https://doi.org/10.1097/BRS.0b013e31819e2b16

    Article  PubMed  Google Scholar 

  7. Geck MJ, Rinella A, Hawthorne D, Macagno A, Koester L, Sides B, Bridwell K, Lenke L, Shufflebarger H (2009) Comparison of surgical treatment in Lenke 5C adolescent idiopathic scoliosis: anterior dual rod versus posterior pedicle fixation surgery: a comparison of two practices. Spine 34(18):1942–1951. https://doi.org/10.1097/BRS.0b013e3181a3c777

    Article  PubMed  Google Scholar 

  8. Wang Y, Bünger CE, Zhang Y, Wu C, Li H, Dahl B, Hansen ES (2013) Lowest instrumented vertebra selection for Lenke 5C scoliosis: a minimum 2-year radiographical follow-up. Spine 38(14):E894-900. https://doi.org/10.1097/BRS.0b013e31829537be

    Article  PubMed  Google Scholar 

  9. Gomez JA, Matsumoto H, Colacchio ND, Roye DP Jr, Sucato DJ, Richards BS, Emans JB, Erickson MA, Sanders JO, Lenke LG, Vitale MG (2014) Risk factors for coronal decompensation after posterior spinal instrumentation and fusion in adolescent idiopathic scoliosis. Spine Deform 2(5):380–385. https://doi.org/10.1016/j.jspd.2014.05.001

    Article  PubMed  Google Scholar 

  10. Okada E, Watanabe K, Pang L, Ogura Y, Takahashi Y, Hosogane N, Toyama Y, Matsumoto M (2015) Posterior correction and fusion surgery using pedicle-screw constructs for Lenke type 5C adolescent idiopathic scoliosis: a preliminary report. Spine 40(1):25–30. https://doi.org/10.1097/brs.0000000000000652

    Article  PubMed  Google Scholar 

  11. Upasani VV, Hedequist DJ, Hresko MT, Karlin LI, Emans JB, Glotzbecker MP (2015) Spinal deformity progression after posterior segmental instrumentation and fusion for idiopathic scoliosis. J Child Orthop 9(1):29–37. https://doi.org/10.1007/s11832-015-0632-5

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kwan MK, Chan CY (2016) Is there an optimal upper instrumented vertebra (UIV) tilt angle to prevent post-operative shoulder imbalance and neck tilt in Lenke 1 and 2 adolescent idiopathic scoliosis (AIS) patients? Eur Spine J 25(10):3065–3074. https://doi.org/10.1007/s00586-016-4529-x

    Article  CAS  PubMed  Google Scholar 

  13. Oba H, Takahashi J, Kobayashi S, Ohba T, Ikegami S, Kuraishi S, Uehara M, Takizawa T, Munakata R, Hatakenaka T, Koseki M, Ebata S, Haro H, Matsuyama Y, Kato H (2019) Upper instrumented vertebra to the right of the lowest instrumented vertebra as a predictor of an increase in the main thoracic curve after selective posterior fusion for the thoracolumbar/lumbar curve in Lenke type 5C adolescent idiopathic scoliosis: multicenter study on the relationship between fusion area and surgical outcome. J Neurosurg Spine. https://doi.org/10.3171/2019.5.Spine181469

    Article  PubMed  Google Scholar 

  14. Lonner BS, Ren Y, Upasani VV, Marks MM, Newton PO, Samdani AF, Chen K, Shufflebarger HL, Shah SA, Lefton DR, Nasser H, Dabrowski CT, Betz RR (2018) Disc degeneration in unfused caudal motion segments ten years following surgery for adolescent idiopathic scoliosis. Spine Deform 6(6):684–690. https://doi.org/10.1016/j.jspd.2018.03.013

    Article  PubMed  Google Scholar 

  15. Wang Y, Hansen ES, Høy K, Wu C, Bünger CE (2011) Distal adding-on phenomenon in Lenke 1A scoliosis: risk factor identification and treatment strategy comparison. Spine 36(14):1113–1122. https://doi.org/10.1097/BRS.0b013e3181f51e95

    Article  PubMed  Google Scholar 

  16. Cloyd JM, Acosta FL Jr, Cloyd C, Ames CP (2010) Effects of age on perioperative complications of extensive multilevel thoracolumbar spinal fusion surgery. J Neurosurg Spine 12(4):402–408. https://doi.org/10.3171/2009.10.Spine08741

    Article  PubMed  Google Scholar 

  17. Djurasovic M, Glassman SD, Howard JM, Copay AG, Carreon LY (2011) Health-related quality of life improvements in patients undergoing lumbar spinal fusion as a revision surgery. Spine 36(4):269–276. https://doi.org/10.1097/BRS.0b013e3181cf1091

    Article  PubMed  Google Scholar 

  18. Ilharreborde B, Ferrero E, Angelliaume A, Lefèvre Y, Accadbled F, Simon AL, de Gauzy JS, Mazda K (2017) Selective versus hyperselective posterior fusions in Lenke 5 adolescent idiopathic scoliosis: comparison of radiological and clinical outcomes. Eur Spine J 26(6):1739–1747. https://doi.org/10.1007/s00586-017-5070-2

    Article  CAS  PubMed  Google Scholar 

  19. Qin X, Sun W, Xu L, Liu Z, Qiu Y, Zhu Z (2016) Selecting the last “substantially” touching vertebra as lowest instrumented vertebra in Lenke type 1A curve: radiographic outcomes with a minimum of 2-year Follow-Up. Spine 41(12):E742-750. https://doi.org/10.1097/brs.0000000000001374

    Article  PubMed  Google Scholar 

  20. Matsumoto M, Watanabe K, Hosogane N, Kawakami N, Tsuji T, Uno K, Suzuki T, Ito M, Yanagida H, Yamaguchi T, Minami S, Akazawa T (2013) Postoperative distal adding-on and related factors in Lenke type 1A curve. Spine 38(9):737–744. https://doi.org/10.1097/BRS.0b013e318279b666

    Article  PubMed  Google Scholar 

  21. Sudo H, Kaneda K, Shono Y, Iwasaki N (2016) Selection of the upper vertebra to be instrumented in the treatment of thoracolumbar and lumbar adolescent idiopathic scoliosis by anterior correction and fusion surgery using dual-rod instrumentation: a minimum 12-year follow-up study. Spine J 16(3):281–287. https://doi.org/10.1016/j.spinee.2015.08.021

    Article  PubMed  Google Scholar 

  22. Kaneda K, Satoh S, Fujiya N (1985) Analysis of results with Zielke instrumentation for thoracolumbar and lumbar curvature. Nihon Seikeigeka Gakkai Zasshi 59(8):841–851

    CAS  PubMed  Google Scholar 

  23. Qin X, He Z, Yin R, Qiu Y, Zhu Z (2019) Where to stop distally in Lenke modifier C AIS with lumbar curve more than 60°: L3 or L4? Clin Neurol Neurosurg 178:77–81. https://doi.org/10.1016/j.clineuro.2019.02.005

    Article  PubMed  Google Scholar 

  24. Fabry G, Van Melkebeek J, Bockx E (1989) Back pain after Harrington rod instrumentation for idiopathic scoliosis. Spine 14(6):620–624. https://doi.org/10.1097/00007632-198906000-00015

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Natural Science Foundation of Jiangsu Province (No. BK20180122); and supported by the Special Funds for Health Science and Technology Development of Nanjing City (No. YKK18092).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongda Bao.

Ethics declarations

Conflict of interest

None of the authors has any potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Shu, S., Jing, W. et al. Optimizing the fusion level for lenke 5C adolescent idiopathic scoliosis: is the S-line a validated and reproducible tool to predict coronal decompensation?. Eur Spine J 30, 1935–1942 (2021). https://doi.org/10.1007/s00586-021-06781-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-021-06781-9

Keywords

Navigation