Skip to main content
Log in

A three-dimensional retrospective analysis of the evolution of spinal instrumentation for the correction of adolescent idiopathic scoliosis

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

This is a clinical radiographic study, spanning over three decades, analyzing the three-dimensional (3-D) changes in spine geometry after corrective surgery for adolescent idiopathic scoliosis (AIS) using four generations of instrumentation systems. The objective of this study was to retrospectively evaluate the evolution of spinal instrumentation over time by measuring the 3-D changes of spinal shape before and after surgical correction of subjects with AIS using Harrington/Harrington-Luque (H/HL) instrumentation, original and recent generations of Cotrel-Dubousset Instrumentation (CDI) with rod rotation maneuvers, as well as third generation systems using thoracic pedicle screws and direct vertebral derotation (DVD) manoeuver in order to determine if the claims for improved 3-D correction from generation to next generation could be substantiated. The 3-D shape of the thoracic and lumbar spine was recorded from a pair of standing radiographs using a novel 3-D reconstruction technique from uncalibrated radiographs in 128 adolescents with AIS undergoing surgery by a posterior approach. Changes in coronal Cobb angles, kyphosis, lordosis, as well as in a series of 3-D parameters computed from the spine reconstructions before and after surgery were used to compare the four groups. Results demonstrate statistically significant differences (= 0.05) between generations with regards to the correction of the coronal Cobb angle, and different loss of physiological lordosis. More importantly, significant differences in the 3-D correction of the spine based on the orientation of the planes of maximal curvature were observed (20/−6% H/HL vs. 39/39% CDI vs. 42/18% DVD for the thoracic/lumbar regions, respectively), confirming that recent CDI and third generation instrumentations coupled with DVD can bring the deformity significantly closer to the sagittal plane. An increased correction in apical vertebra axial rotation was observed with the DVD manoeuver (74%), while fewer notable differences were found between DVD and recent CDI systems in terms of 3-D correction. This is the first quantitative study to clearly demonstrate that the rod derotation and DVD maneuvers can significantly improve 3-D correction of scoliotic deformities, thereby supporting the transition towards these more elaborate and costly instrumentation technologies in terms of 3-D assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aaro S, Dahlborn M (1982) The effect of Harrington instrumentation on the longitudinal axis rotation of the apical vertebra and on the spinal and rib-cage deformity in idiopathic scoliosis studied by computer tomography. Spine 7:456–462. doi:10.1097/00007632-198209000-00009

    Article  PubMed  CAS  Google Scholar 

  2. Aaro S, Ohlen G (1983) The effect of Harrington instrumentation on the sagittal configuration and mobility of the spine in scoliosis. Spine 8:570–575. doi:10.1097/00007632-198309000-00002

    Article  PubMed  CAS  Google Scholar 

  3. Aubin C-E, Lobeau D, Labelle H, Maquinghen-Godillon AP, LeBlanc R, Dansereau J (1999) Planes of Maximum Deformity in the Scoliotic Spine. In: IAF Stokes (ed) Research into spinal deformities 2. IOS Press, Amsterdam, pp 45–48

  4. Aubin CE, Dansereau J, Parent F, Labelle H, de Guise JA (1997) Morphometric evaluations of personalised 3D reconstructions and geometric models of the human spine. Med Biol Eng Comput 35:611–618. doi:10.1007/BF02510968

    Article  PubMed  CAS  Google Scholar 

  5. Bassett GS, Hensinger MC, Keiper MD (1989) Effect of posterior spinal fusion on spinal balance in idiopathic scoliosis. J Pediatr Orthop 9:672–674

    PubMed  CAS  Google Scholar 

  6. Benson DR, DeWald RL, Schultz AB (1977) Harrington rod distraction instrumentation: its effect on vertebral rotation and thoracic compensation. Clin Orthop Relat Res 125:40–44

    PubMed  Google Scholar 

  7. Boisvert J, Pennec X, Ayache N, Labelle H, Cheriet F (2006) 3D anatomical variability assessment of the scoliotic spine using statistics on Lie groups. In: 2006 3rd IEEE international symposium on biomedical imaging: macro to nano. IEEE, Arlington, pp 750–753

  8. Cheriet F, Dansereau J, Petit Y, Aubin CE, Labelle H, De Guise JA (1999) Towards the self-calibration of a multiview radiographic imaging system for the 3D reconstruction of the human spine and rib cage. Int J Pattern Recogn Artif Intell 13:761–779. doi:10.1142/S0218001499000434

    Article  Google Scholar 

  9. Delorme S, Labelle H, Aubin CE, de Guise JA, Rivard CH, Poitras B et al (2000) A three-dimensional radiographic comparison of Cotrel-Dubousset and Colorado instrumentations for the correction of idiopathic scoliosis. Spine 25:205–210. doi:10.1097/00007632-200001150-00010

    Article  PubMed  CAS  Google Scholar 

  10. Delorme S, Petit Y, de Guise JA, Labelle H, Aubin CE, Dansereau J (2003) Assessment of the 3-D reconstruction and high-resolution geometrical modeling of the human skeletal trunk from 2-D radiographic images. IEEE Trans Biomed Eng USA 50:989–998. doi:10.1109/TBME.2003.814525

    Article  CAS  Google Scholar 

  11. Dubousset J, Cotrel Y (1991) Application technique of Cotrel-Dubousset instrumentation for scoliosis deformities. Clin Orthop Relat Res 264:103–110

    PubMed  Google Scholar 

  12. Fitch RD, Turi M, Bowman BE, Hardaker WT (1990) Comparison of Cotrel-Dubousset and Harrington rod instrumentations in idiopathic scoliosis. J Pediatr Orthop 10:44–47

    PubMed  CAS  Google Scholar 

  13. Friend L, Czerwein J Jr, Sharan A, Amaral T, Sarwahi V (2007) P79. Segmental direct vertebral rotational technique for scoliosis correction. Spine J 7:119S. doi:10.1016/j.spinee.2007.07.286

    Article  Google Scholar 

  14. Gaines RW, McKinley LM, Leatherman KD (1981) Effect of the Harrington compression system on the correction of the rib hump in spinal instrumentation for idiopathic scoliosis. Spine 6:489–493

    Article  PubMed  CAS  Google Scholar 

  15. Helenius I, Remes V, Yrjonen T, Ylikoski M, Schlenzka D, Helenius M et al (2003) Harrington and Cotrel-Dubousset instrumentation in adolescent idiopathic scoliosis. Long-term functional and radiographic outcomes. J Bone Joint Surg Am 85-A:2303–2309

    PubMed  Google Scholar 

  16. Humke T, Grob D, Scheier H, Siegrist H (1995) Cotrel-Dubousset and Harrington Instrumentation in idiopathic scoliosis: a comparison of long-term results. Eur Spine J 4:280–283. doi:10.1007/BF00301034

    Article  PubMed  CAS  Google Scholar 

  17. Jeffries BF, Tarlton M, De Smet AA, Dwyer SJ 3rd, Brower AC (1980) Computerized measurement and analysis of scoliosis: a more accurate representation of the shape of the curve. Radiology 134:381–385

    PubMed  CAS  Google Scholar 

  18. Kadoury S, Cheriet F, Dansereau J, Labelle H (2007) Three-dimensional reconstruction of the scoliotic spine and pelvis from uncalibrated biplanar X-ray images. Spinal Disorders Techniques 20:160–168

    Article  Google Scholar 

  19. King HA, Moe JH, Bradford DS, Winter RB (1983) The selection of fusion levels in thoracic idiopathic scoliosis. J Bone Joint Surg Am 65:1302–1313

    PubMed  CAS  Google Scholar 

  20. Labelle H, Dansereau J, Bellefleur C, Jequier JC (1995) Variability of geometric measurements from three-dimensional reconstructions of scoliotic spines and rib cages. Eur Spine J 4:88–94. doi:10.1007/BF00278918

    Article  PubMed  CAS  Google Scholar 

  21. Labelle H, Dansereau J, Bellefleur C, Poitras B, Rivard CH, Stokes IA et al (1995) Comparison between preoperative and postoperative three-dimensional reconstructions of idiopathic scoliosis with the Cotrel-Dubousset procedure. Spine 20:2487–2492

    PubMed  CAS  Google Scholar 

  22. Lee SM, Suk SI, Chung ER (2004) Direct vertebral rotation: a new technique of three-dimensional deformity correction with segmental pedicle screw fixation in adolescent idiopathic scoliosis. Spine 29:343–349. doi:10.1097/01.BRS.0000109991.88149.19

    Article  PubMed  Google Scholar 

  23. Lenke LG, Bridwell KH, Baldus C, Blanke K, Schoenecker PL (1992) Cotrel-Dubousset instrumentation for adolescent idiopathic scoliosis. J Bone Joint Surg Am 74:1056–1067

    PubMed  CAS  Google Scholar 

  24. Luk KD, Leong JC, Reyes L, Hsu LC (1989) The comparative results of treatment in idiopathic thoracolumbar and lumbar scoliosis using the Harrington, Dwyer, and Zielke instrumentations. Spine 14:275–280. doi:10.1097/00007632-198903000-00006

    Article  PubMed  CAS  Google Scholar 

  25. Mielke CH, Lonstein JE, Denis F, Vandenbrink K, Winter RB (1989) Surgical treatment of adolescent idiopathic scoliosis. A comparative analysis. J Bone Joint Surg Am 71:1170–1177

    PubMed  CAS  Google Scholar 

  26. Mikhailovsky MV, Novikov VV, Sarnadsky VV (2002) Three-dimensional correction with CD instrumentation and Harrington rod in the treatment of idiopathic scoliosis. Stud Health Technol Inform 91:216–221

    PubMed  CAS  Google Scholar 

  27. Shah SA (2007) Derotation of the Spine. Neurosurg Clin N Am 18:339–345. doi:10.1016/j.nec.2007.02.003

    Article  PubMed  Google Scholar 

  28. Stokes IA (1994) Three-dimensional terminology of spinal deformity. A report presented to the Scoliosis Research Society by the Scoliosis Research Society Working Group on 3-D terminology of spinal deformity. Spine 19:236–248

    Article  PubMed  CAS  Google Scholar 

  29. Stokes IA, Bigalow LC, Moreland MS (1986) Measurement of axial rotation of vertebrae in scoliosis. Spine 11:213–218. doi:10.1097/00007632-198604000-00006

    Article  PubMed  CAS  Google Scholar 

  30. Stokes IA, Bigalow LC, Moreland MS (1987) Three-dimensional spinal curvature in idiopathic scoliosis. J Orthop Res 5:102–113. doi:10.1002/jor.1100050113

    Article  PubMed  CAS  Google Scholar 

  31. Stokes IA, Labelle H, Aronsson DD (1993) Spinal shape changes in idiopathic scoliosis after Harrington or C-D instrumentation: the axial view. In: Scoliosis Research Society Annual Meeting

  32. Stokes IA, Shuma-Hartswick D, Moreland MS (1988) Spine and back-shape changes in scoliosis. Acta Orthop Scand 59:128–133

    PubMed  CAS  Google Scholar 

  33. Thometz JG, Emans JB (1988) A comparison between spinous process and sublaminar wiring combined with Harrington distraction instrumentation in the management of adolescent idiopathic scoliosis. J Pediatr Orthop 8:129–132

    PubMed  CAS  Google Scholar 

  34. Villemure I, Aubin CE, Grimard G, Dansereau J, Labelle H (2001) Progression of vertebral and spinal three-dimensional deformities in adolescent idiopathic scoliosis: a longitudinal study. Spine 26:2244–2250. doi:10.1097/00007632-200110150-00016

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This paper was supported in part by the Fonds Québecois de la Recherche sur la Nature et les Technologies (FQRNT) and MENTOR, a strategic training program of the Canadian Institutes of Health Research. Special thanks to Julie Joncas, Philippe Labelle and Xavier Glorot for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Labelle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadoury, S., Cheriet, F., Beauséjour, M. et al. A three-dimensional retrospective analysis of the evolution of spinal instrumentation for the correction of adolescent idiopathic scoliosis. Eur Spine J 18, 23–37 (2009). https://doi.org/10.1007/s00586-008-0817-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-008-0817-4

Keywords

Navigation