Skip to main content

Advertisement

Log in

Pull-out strength of patient-specific template-guided vs. free-hand fluoroscopically controlled thoracolumbar pedicle screws: a biomechanical analysis of a randomized cadaveric study

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To assess the pull-out strength of thoracolumbar pedicle screws implanted via either a patient-specific template-guided or conventional free-hand fluoroscopically controlled technique in a randomized cadaveric study, and to evaluate the influence of local vertebral bone density, quantified by Hounsfield units (HU), on pedicle screw pull-out strength.

Methods

Thoracolumbar pedicles of three spine cadavers were instrumented using either a free-hand fluoroscopically controlled or a patient-specific template-guided technique. Preoperative bone density was quantified by HU measured on CT. Pedicle perforation was evaluated on postoperative CT scans by an independent and blinded radiologist. After dissected vertebrae were embedded in aluminum fixation devices, pull-out testing was initiated with a preload of 50 N and a constant displacement rate of 0.5 mm/s. Subgroup analyses were performed excluding pedicle screws with a pedicle breach (n = 47).

Results

Pull-out strength was significantly different with 549 ± 278 and 441 ± 289 N in the template-guided (n = 50) versus fluoroscopically controlled (n = 48) subgroups (p = 0.031), respectively. Subgroup analysis limited to screws with an intrapedicular trajectory revealed a tendency toward a higher pull-out strength in the template-guided (n = 30) versus fluoroscopically controlled screws (n = 21) with 587 ± 309 and 454 ± 269 N (p = 0.118), respectively. There was a trend toward a higher pull-out strength (709 ± 418 versus 420 ± 149 N) in vertebrae with a bone density of (>171 HU) versus (<133 HU), respectively (p = 0.061).

Conclusions

There was a significantly higher pull-out strength of thoracolumbar pedicle screws when inserted via a patient-specific template-guided versus conventional free-hand fluoroscopically controlled technique, potentially associated with screw trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Galbusera F, Volkheimer D, Reitmaier S et al (2015) Pedicle screw loosening: a clinically relevant complication? Eur Spine J 24:1005–1016. doi:10.1007/s00586-015-3768-6

    Article  PubMed  Google Scholar 

  2. Bredow J, Boese CK, Werner CML et al (2016) Predictive validity of preoperative CT scans and the risk of pedicle screw loosening in spinal surgery. Arch Orthop Trauma Surg 136:1063–1067. doi:10.1007/s00402-016-2487-8

    Article  PubMed  Google Scholar 

  3. Okuyama K, Abe E, Suzuki T et al (2001) Influence of bone mineral density on pedicle screw fixation: a study of pedicle screw fixation augmenting posterior lumbar interbody fusion in elderly patients. Spine J 1:402–407

    Article  CAS  PubMed  Google Scholar 

  4. Zhuang X-M, Yu B-S, Zheng Z-M et al (2010) Effect of the degree of osteoporosis on the biomechanical anchoring strength of the sacral pedicle screws: an in vitro comparison between unaugmented bicortical screws and polymethylmethacrylate augmented unicortical screws. Spine (Phila Pa 1976) 35:E925–E931. doi:10.1097/BRS.0b013e3181c5fb21

    Article  Google Scholar 

  5. Newcomb AGUS, Baek S, Kelly BP, Crawford NR (2016) Effect of screw position on load transfer in lumbar pedicle screws: a non-idealized finite element analysis. Comput Methods Biomech Biomed Engin. doi:10.1080/10255842.2016.1209187

    PubMed  Google Scholar 

  6. Santoni BG, Hynes RA, McGilvray KC et al (2009) Cortical bone trajectory for lumbar pedicle screws. Spine J 9:366–373. doi:10.1016/j.spinee.2008.07.008

    Article  CAS  PubMed  Google Scholar 

  7. Cheng WK, Akpolat YT, İnceoğlu S et al (2016) Pars and pedicle fracture and screw loosening associated with cortical bone trajectory: a case series and proposed mechanism through a cadaveric study. Spine J 16:e59–e65. doi:10.1016/j.spinee.2015.09.046

    Article  PubMed  Google Scholar 

  8. Glennie RA, Dea N, Kwon BK, Street JT (2015) Early clinical results with cortically based pedicle screw trajectory for fusion of the degenerative lumbar spine. J Clin Neurosci 22:972–975. doi:10.1016/j.jocn.2015.01.010

    Article  PubMed  Google Scholar 

  9. Lehman RA, Polly DW, Kuklo TR et al (2003) Straight-forward versus anatomic trajectory technique of thoracic pedicle screw fixation: a biomechanical analysis. Spine (Phila Pa 1976) 28:2058–2065. doi:10.1097/01.BRS.0000087743.57439.4F

    Article  Google Scholar 

  10. Farshad M, Farshad-Amacker NA, Bachmann E et al (2014) Biomechanical comparison of sagittal-parallel versus non-parallel pedicle screw placement. Acta Neurochir (Wien) 156:2147–2151. doi:10.1007/s00701-014-2244-0

    Article  Google Scholar 

  11. Barber JW, Boden SD, Ganey T, Hutton WC (1998) Biomechanical study of lumbar pedicle screws: does convergence affect axial pullout strength? J Spinal Disord 11:215–220

    Article  CAS  PubMed  Google Scholar 

  12. Stauff MP, Freedman BA, Kim J-H et al (2014) The effect of pedicle screw redirection after lateral wall breach—a biomechanical study using human lumbar vertebrae. Spine J 14:98–103. doi:10.1016/j.spinee.2013.03.028

    Article  PubMed  Google Scholar 

  13. Yuan Q, Han X, Han X et al (2014) Krag versus Caudad trajectory technique for pedicle screw insertion in osteoporotic vertebrae: biomechanical comparison and analysis. Spine (Phila Pa 1976) 39:B27–B35. doi:10.1097/BRS.0000000000000431

    Article  Google Scholar 

  14. Wan S, Lei W, Wu Z et al (2010) Biomechanical and histological evaluation of an expandable pedicle screw in osteoporotic spine in sheep. Eur Spine J 19:2122–2129. doi:10.1007/s00586-010-1489-4

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wu Z, Cui G, Lei W et al (2010) Application of an expandable pedicle screw in the severe osteoporotic spine: a preliminary study. Clin Investig Med Méd Clin Exp 33:E368–E374

    Article  Google Scholar 

  16. Koller H, Zenner J, Hitzl W et al (2013) The impact of a distal expansion mechanism added to a standard pedicle screw on pullout resistance. A biomechanical study. Spine J 13:532–541. doi:10.1016/j.spinee.2013.01.038

    Article  PubMed  Google Scholar 

  17. Chen Y-L, Chen W-C, Chou C-W et al (2014) Biomechanical study of expandable pedicle screw fixation in severe osteoporotic bone comparing with conventional and cement-augmented pedicle screws. Med Eng Phys 36:1416–1420. doi:10.1016/j.medengphy.2014.05.003

    Article  PubMed  Google Scholar 

  18. Liu D, Shi L, Lei W et al (2016) Biomechanical comparison of expansive pedicle screw and polymethylmethacrylate-augmented pedicle screw in osteoporotic synthetic bone in primary implantation: an experimental study. Clin spine Surg 29:E351–E357. doi:10.1097/BSD.0b013e31828bfc85

    PubMed  Google Scholar 

  19. Renner SM, Lim T-H, Kim W-J et al (2004) Augmentation of pedicle screw fixation strength using an injectable calcium phosphate cement as a function of injection timing and method. Spine (Phila Pa 1976) 29:E212–E216

    Article  Google Scholar 

  20. Burval DJ, McLain RF, Milks R, Inceoglu S (2007) Primary pedicle screw augmentation in osteoporotic lumbar vertebrae: biomechanical analysis of pedicle fixation strength. Spine (Phila Pa 1976) 32:1077–1083. doi:10.1097/01.brs.0000261566.38422.40

    Article  Google Scholar 

  21. Frankel BM, Jones T, Wang C (2007) Segmental polymethylmethacrylate-augmented pedicle screw fixation in patients with bone softening caused by osteoporosis and metastatic tumor involvement: a clinical evaluation. Neurosurgery 61:531–538. doi:10.1227/01.NEU.0000290899.15567.68

    Article  PubMed  Google Scholar 

  22. Choma TJ, Frevert WF, Carson WL et al (2011) Biomechanical analysis of pedicle screws in osteoporotic bone with bioactive cement augmentation using simulated in vivo multicomponent loading. Spine (Phila Pa 1976) 36:454–462. doi:10.1097/BRS.0b013e3181d449ec

    Article  Google Scholar 

  23. El Saman A, Meier S, Sander A et al (2013) Reduced loosening rate and loss of correction following posterior stabilization with or without PMMA augmentation of pedicle screws in vertebral fractures in the elderly. Eur J Trauma Emerg Surg 39:455–460. doi:10.1007/s00068-013-0310-6

    Article  PubMed  Google Scholar 

  24. Kueny RA, Kolb JP, Lehmann W et al (2014) Influence of the screw augmentation technique and a diameter increase on pedicle screw fixation in the osteoporotic spine: pullout versus fatigue testing. Eur Spine J 23:2196–2202. doi:10.1007/s00586-014-3476-7

    Article  PubMed  Google Scholar 

  25. Fan HT, Zhang RJ, Shen CL et al (2016) The biomechanical properties of pedicle screw fixation combined with trajectory bone cement augmentation in osteoporotic vertebrae. Clin spine Surg 29:78–85. doi:10.1097/BSD.0b013e3182a14870

    PubMed  Google Scholar 

  26. Costa F, Ortolina A, Galbusera F et al (2016) Pedicle screw cement augmentation. A mechanical pullout study on different cement augmentation techniques. Med Eng Phys 38:181–186. doi:10.1016/j.medengphy.2015.11.020

    Article  PubMed  Google Scholar 

  27. Karami KJ, Buckenmeyer LE, Kiapour AM et al (2015) Biomechanical evaluation of the pedicle screw insertion depth effect on screw stability under cyclic loading and subsequent pullout. J Spinal Disord Tech 28:E133–E139. doi:10.1097/BSD.0000000000000178

    Article  PubMed  Google Scholar 

  28. Tsai K-J, Murakami H, Horton WC et al (2009) Pedicle screw fixation strength: a biomechanical comparison between 4.5-mm and 5.5-mm diameter screws in osteoporotic upper thoracic vertebrae. J Surg Orthop Adv 18:23–27

    PubMed  Google Scholar 

  29. Farshad M, Betz M, Farshad-Amacker NA, Moser M (2016) Accuracy of patient-specific template-guided vs. free-hand fluoroscopically controlled pedicle screw placement in the thoracic and lumbar spine: a randomized cadaveric study. Eur Spine. doi:10.1007/s00586-016-4728-5

    Google Scholar 

  30. Lu S, Xu YQ, Zhang YZ et al (2009) A novel computer-assisted drill guide template for lumbar pedicle screw placement: a cadaveric and clinical study. Int J Med Robot 5:184–191. doi:10.1002/rcs.249

    Article  PubMed  Google Scholar 

  31. Ma T, Xu Y-Q, Cheng Y-B et al (2012) A novel computer-assisted drill guide template for thoracic pedicle screw placement: a cadaveric study. Arch Orthop Trauma Surg 132:65–72. doi:10.1007/s00402-011-1383-5

    Article  PubMed  Google Scholar 

  32. Lu S, Zhang YZ, Wang Z et al (2012) Accuracy and efficacy of thoracic pedicle screws in scoliosis with patient-specific drill template. Med Biol Eng Comput 50:751–758. doi:10.1007/s11517-012-0900-1

    Article  PubMed  Google Scholar 

  33. Birnbaum K, Schkommodau E, Decker N et al (2001) Computer-assisted orthopedic surgery with individual templates and comparison to conventional operation method. Spine (Phila Pa 1976) 26:365–370

    Article  CAS  Google Scholar 

  34. Sugawara T, Higashiyama N, Kaneyama S et al (2013) Multistep pedicle screw insertion procedure with patient-specific lamina fit-and-lock templates for the thoracic spine: clinical article. J Neurosurg Spine 19:185–190. doi:10.3171/2013.4.SPINE121059

    Article  PubMed  Google Scholar 

  35. Lamartina C, Cecchinato R, Fekete Z et al (2015) Pedicle screw placement accuracy in thoracic and lumbar spinal surgery with a patient-matched targeting guide: a cadaveric study. Eur Spine J 24(suppl 7):937–941. doi:10.1007/s00586-015-4261-y

    Article  PubMed  Google Scholar 

  36. Hu Y, Yuan Z-S, Spiker WR et al (2016) A comparative study on the accuracy of pedicle screw placement assisted by personalized rapid prototyping template between pre- and post-operation in patients with relatively normal mid-upper thoracic spine. Eur Spine J 25:1706–1715. doi:10.1007/s00586-016-4540-2

    Article  PubMed  Google Scholar 

  37. Berry E, Cuppone M, Porada S et al (2005) Personalised image-based templates for intra-operative guidance. Proc Inst Mech Eng H 219:111–118

    Article  CAS  PubMed  Google Scholar 

  38. Merc M, Drstvensek I, Vogrin M et al (2013) A multi-level rapid prototyping drill guide template reduces the perforation risk of pedicle screw placement in the lumbar and sacral spine. Arch Orthop Trauma Surg 133:893–899. doi:10.1007/s00402-013-1755-0

    Article  PubMed  Google Scholar 

  39. Takemoto M, Fujibayashi S, Ota E et al (2016) Additive-manufactured patient-specific titanium templates for thoracic pedicle screw placement: novel design with reduced contact area. Eur Spine J 25:1698–1705. doi:10.1007/s00586-015-3908-z

    Article  PubMed  Google Scholar 

  40. Schreiber JJ, Anderson PA, Rosas HG et al (2011) Hounsfield units for assessing bone mineral density. doi:10.2106/JBJS.J.00160

    Google Scholar 

  41. Mason A, Paulsen R, Babuska JM et al (2014) The accuracy of pedicle screw placement using intraoperative image guidance systems. J Neurosurg Spine 20:196–203. doi:10.3171/2013.11.SPINE13413

    Article  PubMed  Google Scholar 

  42. Meng X-T, Guan X-F, Zhang H-L, He S-S (2016) Computer navigation versus fluoroscopy-guided navigation for thoracic pedicle screw placement: a meta-analysis. Neurosurg Rev 39:385–391. doi:10.1007/s10143-015-0679-2

    Article  PubMed  Google Scholar 

  43. Larson AN, Polly DW, Guidera KJ et al (2012) The accuracy of navigation and 3D Image-Guided Placement for the placement of pedicle screws in congenital spine deformity. J Pediatr Orthop 32:e23–e29. doi:10.1097/BPO.0b013e318263a39e

    Article  PubMed  Google Scholar 

  44. Kosmopoulos V, Schizas C (2007) Pedicle screw placement accuracy. Spine (Phila Pa 1976) 32:E111–E120. doi:10.1097/01.brs.0000254048.79024.8b

    Article  Google Scholar 

  45. Shin M-H, Hur J-W, Ryu K-S, Park C-K (2015) Prospective comparison study between the fluoroscopy-guided and navigation coupled with O-arm–guided pedicle screw placement in the thoracic and lumbosacral spines. J Spinal Disord Tech 28:E347–E351. doi:10.1097/BSD.0b013e31829047a7

    Article  PubMed  Google Scholar 

  46. Costa F, Villa T, Anasetti F et al (2013) Primary stability of pedicle screws depends on the screw positioning and alignment. Spine J 13:1934–1939. doi:10.1016/j.spinee.2013.03.046

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ioannis Spyrou and Tobias Götschi for their support during biomechanical testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Aichmair.

Ethics declarations

This study was conducted in accordance with Swiss and international law requirements. Ethical board’s approval was obtained from the Ethical Committee of Northwestern and Central Switzerland (ID: EKNZ BASEC 2016-00204).

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aichmair, A., Moser, M., Bauer, M.R. et al. Pull-out strength of patient-specific template-guided vs. free-hand fluoroscopically controlled thoracolumbar pedicle screws: a biomechanical analysis of a randomized cadaveric study. Eur Spine J 26, 2865–2872 (2017). https://doi.org/10.1007/s00586-017-5025-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-017-5025-7

Keywords

Navigation