Skip to main content

Advertisement

Log in

The effect of scoliosis surgery on pulmonary function in spinal muscular atrophy type II patients

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Various results of the previous literature related to surgical effect on pulmonary function of spinal muscular atrophy (SMA) patients might be due to different SMA type, different fusion level and technique. The aim of this study was to determine the value of scoliosis surgery for SMA type II patients with regard to pulmonary function, under the same fusion level, fusion technique and average long-term follow-up.

Methods

Ten SMA II patients who underwent spinal correction procedures from 1993 to 2010 were identified. Data on clinical features and pulmonary function, including forced vital capacity (FVC) and forced expiratory volume in 1st second (FEV1), were collected. The data on pulmonary function were divided into preoperative, postoperative short-term (0–5 years), mid-term (5–10 years), and long-term (>10 years). Statistical comparisons were made using the Wilcoxon test for pulmonary function and body weight analysis. Questions were answered by parents on how surgery influenced the frequency of respiratory infection and the ability to sit at school.

Results

The average length of postoperative pulmonary function follow-up was 12.3 years (range 4.9–15.9 years). There was no significant difference in FVC or FEV1 between preoperative and each postoperative period. However, a significant decline from mid-term to long-term was observed (p = 0.028). Body weight increased significantly in all postoperative periods and was moderately correlated to pulmonary function (r = 0.526 for FVC). The answers to the questionnaire revealed that 80% of the patients had obvious improvement in the frequency of respiratory infection and 100% were tolerable sitting at school.

Conclusions

Surgical correction for scoliosis in SMA II patients results in pulmonary function being maintained during long-term follow-up. In addition, the advantages of surgery also include body weight gain, better sitting tolerance, and reduced frequency of respiratory infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dubowitz V (1978) Muscle disorders in childhood. Major Probl Clin Pediatr 16:1–282

    Google Scholar 

  2. Evans GA, Drennan JC, Russman BS (1981) Functional classification and orthopaedic management of spinal muscular atrophy. J Bone Joint Surg Br 63B(4):516–522

    CAS  PubMed  Google Scholar 

  3. Lin LC, Jong YJ (2004) Pulmonary function assessment in patients with spinal muscular atrophy type II and type III. Acta Paediatr Taiwan 45(1):15–18

    PubMed  Google Scholar 

  4. Fujak A, Raab W, Schuh A, Richter S, Forst R, Forst J (2013) Natural course of scoliosis in proximal spinal muscular atrophy type II and IIIa: descriptive clinical study with retrospective data collection of 126 patients. BMC Musculoskelet Disord 14:283. doi:10.1186/1471-2474-14-283

    Article  PubMed  PubMed Central  Google Scholar 

  5. Granata C, Merlini L, Magni E, Marini ML, Stagni SB (1989) Spinal muscular atrophy: natural history and orthopaedic treatment of scoliosis. Spine 14(7):760–762 (Phila Pa 1976)

    Article  CAS  PubMed  Google Scholar 

  6. Robinson D, Galasko CS, Delaney C, Williamson JB, Barrie JL (1995) Scoliosis and lung function in spinal muscular atrophy. Eur Spine J 4(5):268–273

    Article  CAS  PubMed  Google Scholar 

  7. Burow M, Forst R, Forst J, Hofner B, Fujak A (2016) Perioperative complications of scoliosis surgery in patients with Duchenne muscular dystrophy and spinal muscular atrophy, focussing on wound healing disorders. Int J Neurosci. doi:10.1080/00207454.2016.1196688

    PubMed  Google Scholar 

  8. Aprin H, Bowen JR, MacEwen GD, Hall JE (1982) Spine fusion in patients with spinal muscular atrophy. J Bone Joint Surg Am 64(8):1179–1187

    Article  CAS  PubMed  Google Scholar 

  9. Brown JC, Zeller JL, Swank SM, Furumasu J, Warath SL (1989) Surgical and functional results of spine fusion in spinal muscular atrophy. Spine 14(7):763–770 (Phila Pa 1976)

    Article  CAS  PubMed  Google Scholar 

  10. Piasecki JO, Mahinpour S, Levine DB (1986) Long-term follow-up of spinal fusion in spinal muscular atrophy. Clin Orthop Relat Res (207):44–54

  11. Riddick MF, Winter RB, Lutter LD (1982) Spinal deformities in patients with spinal muscle atrophy: a review of 36 patients. Spine 7(5):476–483 (Phila Pa 1976)

    Article  CAS  PubMed  Google Scholar 

  12. Chng SY, Wong YQ, Hui JH, Wong HK, Ong HT, Goh DY (2003) Pulmonary function and scoliosis in children with spinal muscular atrophy types II and III. J Paediatr Child Health 39(9):673–676. doi:10.1046/j.1440-1754.2003.00266.x

    Article  CAS  PubMed  Google Scholar 

  13. Diab KM, Sevastik JA, Hedlund R, Suliman IA (1995) Accuracy and applicability of measurement of the scoliotic angle at the frontal plane by Cobb’s method, by Ferguson’s method and by a new method. Eur Spine J 4(5):291–295

    Article  CAS  PubMed  Google Scholar 

  14. Campbell DT, Fiske DW (1959) Convergent and discriminant validation by the multitrait-multimethod matrix. Psychol Bull 56(2):81–105

    Article  CAS  PubMed  Google Scholar 

  15. Khirani S, Colella M, Caldarelli V, Aubertin G, Boule M, Forin V, Ramirez A, Fauroux B (2013) Longitudinal course of lung function and respiratory muscle strength in spinal muscular atrophy type 2 and 3. Eur J Paediatr Neurol. doi:10.1016/j.ejpn.2013.04.004

    PubMed  Google Scholar 

  16. Pellegrino R, Viegi G, Brusasco V, Crapo RO, Burgos F, Casaburi R, Coates A, van der Grinten CP, Gustafsson P, Hankinson J, Jensen R, Johnson DC, MacIntyre N, McKay R, Miller MR, Navajas D, Pedersen OF, Wanger J (2005) Interpretative strategies for lung function tests. Eur Respir J 26(5):948–968. doi:10.1183/09031936.05.00035205

    Article  CAS  PubMed  Google Scholar 

  17. Cooper BG (2007) Reference values in lung function testing: all for one and one for all? Int J Chron Obstruct Pulm Dis 2(3):189–190

    Google Scholar 

  18. Jiang M, Gao Y, Zhong NS, Chen WQ, Guan WJ, Zheng JP (2015) Spirometric reference values for healthy Han children aged 5–15 years in Guangzhou, southern China. Pediatr Pulmonol 50(10):1009–1016. doi:10.1002/ppul.23099

    Article  PubMed  Google Scholar 

  19. Granata C, Cervellati S, Ballestrazzi A, Corbascio M, Merlini L (1993) Spine surgery in spinal muscular atrophy: long-term results. Neuromuscul Disord 3(3):207–215

    Article  CAS  PubMed  Google Scholar 

  20. Merlini L, Granata C, Bonfiglioli S, Marini ML, Cervellati S, Savini R (1989) Scoliosis in spinal muscular atrophy: natural history and management. Dev Med Child Neurol 31(4):501–508

    Article  CAS  PubMed  Google Scholar 

  21. Thacker M, Hui JH, Wong HK, Chatterjee A, Lee EH (2002) Spinal fusion and instrumentation for paediatric neuromuscular scoliosis: retrospective review. J Orthop Surg (Hong Kong) 10(2):144–151

    Article  CAS  Google Scholar 

  22. Fujak A, Raab W, Schuh A, Kress A, Forst R, Forst J (2012) Operative treatment of scoliosis in proximal spinal muscular atrophy: results of 41 patients. Arch Orthop Trauma Surg 132(12):1697–1706. doi:10.1007/s00402-012-1610-8

    Article  PubMed  Google Scholar 

  23. Berntsen S, Wisloff T, Nafstad P, Nystad W (2008) Lung function increases with increasing level of physical activity in school children. Pediatr Exerc Sci 20(4):402–410

    Article  PubMed  Google Scholar 

  24. Jones PR, Baber FM, Heywood C, Cotes JE (1977) Ventilatory capacity if healthy Chinese children: relation to habitual activity. Ann Hum Biol 4(2):155–161

    Article  CAS  PubMed  Google Scholar 

  25. Ji J, Wang SQ, Liu YJ, He QQ (2013) Physical Activity and lung function growth in a cohort of Chinese school children: a prospective study. PLoS One 8(6):e66098. doi:10.1371/journal.pone.0066098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jakes RW, Day NE, Patel B, Khaw KT, Oakes S, Luben R, Welch A, Bingham S, Wareham NJ (2002) Physical inactivity is associated with lower forced expiratory volume in 1 second: European Prospective Investigation into Cancer-Norfolk prospective population study. Am J Epidemiol 156(2):139–147

    Article  PubMed  Google Scholar 

  27. Rosenkranz SK, Rosenkranz RR, Hastmann TJ, Harms CA (2012) High-intensity training improves airway responsiveness in inactive nonasthmatic children: evidence from a randomized controlled trial. J Appl Physiol 112(7):1174–1183. doi:10.1152/japplphysiol.00663.2011

    Article  CAS  PubMed  Google Scholar 

  28. Donaldson AV, Maddocks M, Martolini D, Polkey MI, Man WD (2012) Muscle function in COPD: a complex interplay. Int J Chron Obstruct Pulmon Dis 7:523–535. doi:10.2147/COPD.S28247

    PubMed  PubMed Central  Google Scholar 

  29. Cibella F, Bruno A, Cuttitta G, Bucchieri S, Melis MR, De Cantis S, La Grutta S, Viegi G (2015) An elevated body mass index increases lung volume but reduces airflow in italian school children. PLoS One 10:e0127154. doi:10.1371/journal.pone.0127154

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bekkers MB, Wijga AH, Gehring U, Koppelman GH, de Jongste JC, Smit HA, Brunekreef B (2015) BMI, waist circumference at 8 and 12 years of age and FVC and FEV at 12 years of age; the PIAMA birth cohort study. BMC Pulm Med 15(1):39. doi:10.1186/s12890-015-0032-0

    Article  PubMed  PubMed Central  Google Scholar 

  31. Garg S (2016) Management of scoliosis in patients with Duchenne muscular dystrophy and spinal muscular atrophy: a literature review. J Pediatr Rehabil Med 9(1):23–29. doi:10.3233/prm-160358

    Article  PubMed  Google Scholar 

  32. Bridwell KH, Baldus C, Iffrig TM, Lenke LG, Blanke K (1999) Process measures and patient/parent evaluation of surgical management of spinal deformities in patients with progressive flaccid neuromuscular scoliosis (Duchenne’s muscular dystrophy and spinal muscular atrophy). Spine 24(13):1300–1309 (Phila Pa 1976)

    Article  CAS  PubMed  Google Scholar 

  33. Messina S, Pane M, De Rose P, Vasta I, Sorleti D, Aloysius A, Sciarra F, Mangiola F, Kinali M, Bertini E, Mercuri E (2008) Feeding problems and malnutrition in spinal muscular atrophy type II. Neuromuscul Disord 18(5):389–393. doi:10.1016/j.nmd.2008.02.008

    Article  PubMed  Google Scholar 

  34. Cunningham-Rundles S (1982) Effects of nutritional status on immunological function. Am J Clin Nutr 35(5 Suppl):1202–1210

    CAS  PubMed  Google Scholar 

  35. Aldrich TK (1993) Nutritional factors in the pathogenesis and therapy of respiratory insufficiency in neuromuscular diseases. Monaldi Arch Chest Dis 48(4):327–330

    CAS  PubMed  Google Scholar 

  36. Mosquera RA, Hashmi SS, Pacheco SE, Reverdin A, Chevallier J, Colasurdo GN (2014) Dysanaptic growth of lung and airway in children with post-infectious bronchiolitis obliterans. Clin Respir J 8(1):63–71. doi:10.1111/crj.12037

    Article  PubMed  Google Scholar 

  37. Gozal D (2000) Pulmonary manifestations of neuromuscular disease with special reference to Duchenne muscular dystrophy and spinal muscular atrophy. Pediatr Pulmonol 29(2):141–150. doi:10.1002/(SICI)1099-0496(200002)29:2<141:AID-PPUL9>3.0.CO;2-Y

    Article  CAS  PubMed  Google Scholar 

  38. Wang CH, Finkel RS, Bertini ES, Schroth M, Simonds A, Wong B, Aloysius A, Morrison L, Main M, Crawford TO, Trela A (2007) Consensus statement for standard of care in spinal muscular atrophy. J Child Neurol 22(8):1027–1049. doi:10.1177/0883073807305788

    Article  PubMed  Google Scholar 

  39. Kurz LT, Mubarak SJ, Schultz P, Park SM, Leach J (1983) Correlation of scoliosis and pulmonary function in Duchenne muscular dystrophy. J Pediatr Orthop 3(3):347–353

    Article  CAS  PubMed  Google Scholar 

  40. Li XY, Li Z, Feng F, Lin YX, Guo HW, Fang LG, Liang JQ, Zhang JG, Qiu GX, Shen JX (2016) Correlation between severity of adolescent idiopathic scoliosis and pulmonary artery systolic pressure: a study of 338 patients. Eur Spine J. doi:10.1007/s00586-016-4471-y

    Google Scholar 

  41. Furumasu J, Swank SM, Brown JC, Gilgoff I, Warath S, Zeller J (1989) Functional activities in spinal muscular atrophy patients after spinal fusion. Spine 14(7):771–775

    Article  CAS  PubMed  Google Scholar 

  42. Mesfin A, Sponseller PD, Leet AI (2012) Spinal muscular atrophy: manifestations and management. J Am Acad Orthop Surg 20(6):393–401. doi:10.5435/JAAOS-20-06-393

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Special thanks to the author Yi-Jing Lue for statistical analysis consultation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yen-Mou Lu.

Ethics declarations

Conflict of interest

The authors declare the absence of any conflict of interest or financial relationships pertaining to this manuscript.

Additional information

Y.-C. Tien and Y.-M. Lu contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chou, SH., Lin, GT., Shen, PC. et al. The effect of scoliosis surgery on pulmonary function in spinal muscular atrophy type II patients. Eur Spine J 26, 1721–1731 (2017). https://doi.org/10.1007/s00586-016-4828-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-016-4828-2

Keywords

Navigation