Skip to main content

Advertisement

Log in

Anti-RANKL antibodies decrease CGRP expression in dorsal root ganglion neurons innervating injured lumbar intervertebral discs in rats

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Nuclear factor-κB (NF-κB), receptor activator of NF-κB (RANK), and RANK ligand (RANKL) are transcriptional regulators of inflammatory cytokines. RANKL expression in dorsal root ganglion (DRG) neurons is elevated in animal models of pain or intervertebral disc herniation. We sought to evaluate the effect of anti-RANKL antibodies on sensory nerves innervating injured intervertebral discs.

Method

We labeled DRG neurons innervating L5-6 discs with FluoroGold (FG). The L5-6 discs of 36 rats were punctured using a 23-gage needle and 18 rats underwent sham surgery without disc puncture. The puncture group was evenly subdivided into a group in which 10 μl saline was administered to the injured disc and a group in which 10 μl of anti-RANKL antibody was administered. Seven and 14 days postsurgery, DRGs at L2 level were harvested, sectioned, and immunostained for calcitonin gene-related peptide (CGRP). The proportion of CGRP-immunoreactive (IR) DRG neurons of all FG-positive neurons was determined. Amount of tumor necrosis factor (TNF)-α and interleukin(IL)-6 was measured within the intervertebral discs in each group at 7 and 14 days after surgery using an enzyme-linked immunosorbent assay (ELISA).

Results

The proportion of CGRP-IR DRG neurons to total FG-labeled neurons innervating injured intervertebral discs and amount of TNF-α and IL-6 in the injured discs in the saline control group was significantly increased compared with that found in rats from the sham surgery group (P < 0.05). However, application of anti-RANKL antibody to the injured discs significantly decreased the proportion of CGRP-IR DRG neurons to total FG-labeled neurons and amount of TNF-α and IL-6 in the injured discs (P < 0.05).

Conclusions

TNF-α and IL-6 in the injured discs increased and CGRP expression increased in DRG neurons innervating injured discs, and antibodies to RANKL could suppress this increased TNF-α, IL-6, and CGRP expression. RANKL may be a therapeutic target for pain control in patients with lumbar disc degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nachemson A (2004) Epidemiology and the economics of low back pain. In: Herkowits HN, Dvorak J, Bell G, Nordin M, Grob D (eds) The Lumbar Spine, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp 3–10

    Google Scholar 

  2. Lotz JC, Ulrich JA (2006) Innervation, inflammation, and hypermobility may characterize pathologic disc degeneration: review of animal model data. J Bone Joint Surg Am 88:76–82

    Article  PubMed  Google Scholar 

  3. Ohtori S, Inoue G, Miyagi M et al. (2014) Pathomechanisms of discogenic low back pain in humans and animal models. Spine J. pii:S1529–9430(14)00279–4

  4. Ma W, Bisby MA (1998) Increased activation of nuclear factor kappa B in rat lumbar dorsal root ganglion neurons following partial sciatic nerve injuries. Brain Res 797:243–254

    Article  CAS  PubMed  Google Scholar 

  5. Inoue G, Ochiai N, Ohtori S et al (2006) Injection of nuclear factor-kappa B decoy into the sciatic nerve suppresses mechanical allodynia and thermal hyperalgesia in a rat inflammatory pain model. Spine 31:2904–2908

    Article  PubMed  Google Scholar 

  6. Suzuki M, Inoue G, Gemba T et al (2009) Nuclear factor-kappa B decoy suppresses nerve injury and improves mechanical allodynia and thermal hyperalgesia in a rat lumbar disc herniation model. Eur Spine J 18:1001–1007

    Article  PubMed Central  PubMed  Google Scholar 

  7. Charatcharoenwitthaya N, Khosla S, Atkinson EJ et al (2007) Effect of blockade of TNF-α and interleukin-1 action on bone resorption in early postmenopausal women. J Bone Miner Res 22:724–729

    Article  CAS  PubMed  Google Scholar 

  8. Eghbali-Fatourechi G, Khosla S, Sanyal A et al (2003) Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 111:1221–1230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Feng X (2005) Regulatory roles and molecular signaling of TNF family members in osteoclasts. Gene 350:1–13

    Article  CAS  PubMed  Google Scholar 

  10. Matsuyama Y, Sakuma Y, Suzuki M et al (2014) Evaluation of behavior and expression of receptor activator of nuclear factor-kappa B ligand in dorsal root ganglia after sciatic nerve compression and application of nucleus pulposus in rats. Asian Spine J 8:557–564

    Article  PubMed Central  PubMed  Google Scholar 

  11. Ashton IK, Walsh DA, Polak JM et al (1994) Substance P in intervertebral discs: binding sites on vascular endothelium of the human annulus fibrosus. Acta Orthop Scand 65:635–639

    Article  CAS  PubMed  Google Scholar 

  12. McCarthy PW, Carruthers B, Martin D et al (1991) Immunohistochemical demonstration of sensory nerve fibres and endings in the lumbar intervertebral discs of the rat. Spine 16:653–655

    Article  CAS  PubMed  Google Scholar 

  13. Miyagi M, Millecamps M, Danco AT et al (2014) ISSLS Prize winner: increased innervation and sensory nervous system plasticity in a mouse model of low back pain due to intervertebral disc degeneration. Spine 39:1345–1354

    Article  PubMed  Google Scholar 

  14. Horii M, Orita S, Nagata M et al (2011) Direct application of the tumor necrosis factor-α inhibitor, etanercept, into a punctured intervertebral disc decreases calcitonin gene-related peptide expression in rat dorsal root ganglion neurons. Spine. 36:E80–E85

    Article  PubMed  Google Scholar 

  15. Ohtori S, Takahashi K, Chiba T et al (2001) Sensory innervation of the dorsal portion of the lumbar intervertebral discs in rats. Spine 26:946–950

    Article  CAS  PubMed  Google Scholar 

  16. Ohtori S, Takahashi Y, Takahashi K et al (1999) Sensory innervation of the dorsal portion of the lumbar intervertebral disc in rats. Spine 24:2295–2299

  17. Ohtori S, Takahashi K, Chiba T et al (2002) Substance P and calcitonin gene-related peptide immunoreactive sensory DRG neurons innervating the lumbar intervertebral discs in rats. Ann Anat 183:235–240

    Article  Google Scholar 

  18. Ozawa T, Aoki Y, Ohtori S et al (2003) The dorsal portion of the lumbar intervertebral disc is innervated primarily by small peptide-containing dorsal root ganglion neurons in rats. Neurosci Lett 344:65–67

    Article  CAS  PubMed  Google Scholar 

  19. Ozawa T, Ohtori S, Inoue G et al (2006) The degenerated lumbar intervertebral disc is innervated primarily by peptide-containing sensory nerve fibers in humans. Spine 31:2418–2422

    Article  PubMed  Google Scholar 

  20. Nakamura S, Takahashi K, Takahashi Y et al (1996) Origin of nerves supplying the posterior portion of lumbar intervertebral discs in rats. Spine 21:917–924

    Article  CAS  PubMed  Google Scholar 

  21. Ohtori S, Nakamura S, Koshi T et al (2010) Effectiveness of L2 spinal nerve infiltration for selective discogenic low back pain patients. J Orthop Sci 15:731–736

    Article  PubMed  Google Scholar 

  22. Ding M, Hart RP, Jonakait GM (1995) Tumor necrosis factor-α induces substance P in sympathetic ganglia through sequential induction of interleukin-1 and leukemia inhibitory factor. J Neurobiol 28:445–454

    Article  CAS  PubMed  Google Scholar 

  23. Hua XY, Chen P, Fox A et al (1996) Involvement of cytokines in lipopolysaccharide-induced facilitation of CGRP release from capsaicin-sensitive nerves in the trachea: studies with interleukin-1β and tumor necrosis factor-α. J Neurosci 16:4742–4748

    CAS  PubMed  Google Scholar 

  24. Oprée A, Kress M (2000) Involvement of the proinflammatory cytokines tumor necrosis factor-α, IL-1β, and IL-6 but not IL-8 in the development of heat hyperalgesia: effects on heat-evoked calcitonin gene-related peptide release from rat skin. J Neurosci 20:6289–6293

    PubMed  Google Scholar 

  25. Onda A, Murata Y, Rydevik B et al (2004) Infliximab attenuates immunoreactivity of brain-derived neurotrophic factor in a rat model of herniated nucleus pulposus. Spine 29:1857–1861

    Article  PubMed  Google Scholar 

  26. Morishita R, Sugimoto T, Aoki M et al (1997) In vivo transfection of cis element ‘‘decoy’’ against nuclear factor-κB binding site prevents myocardial infarction. Nat Med 8:894–899

    Article  Google Scholar 

  27. Sakurai H, Shigemori N, Hisada Y et al (1997) Suppression of NF-κB and AP-1 activation by glucocorticoids in experimental glomerulonephritis in rats: molecular mechanisms of anti-nephritic action. Biochim Biophys Acta 1362:252–262

    Article  CAS  PubMed  Google Scholar 

  28. Novack DV, Teitelbaum SL (2008) The osteoclast: friend or foe? Ann Rev Pathol 3:457–484

    Article  CAS  Google Scholar 

  29. Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473:139–146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Ohtori S, Miyagi M, Eguchi Y et al (2012) Epidural administration of spinal nerves with the tumor necrosis factor-alpha inhibitor, etanercept, compared with dexamethasone for treatment of sciatica in patients with lumbar spinal stenosis: a prospective randomized study. Spine 37:439–444

    Article  PubMed  Google Scholar 

  31. Ohtori S, Miyagi M, Eguchi Y et al (2012) Efficacy of epidural administration of anti-interleukin-6 receptor antibody onto spinal nerve for treatment of sciatica. Eur Spine J 21:2079–2084

    Article  PubMed Central  PubMed  Google Scholar 

  32. Smith HS, Barkin RL (2014) Painful Boney Metastases. Am J Ther 21:106–130

    Article  PubMed  Google Scholar 

  33. Thomas D, Henshaw R, Skubitz K et al (2010) Denosumab in patients with giant-cell tumour of bone: an open-label, phase 2 study. Lancet Oncol 11:275–280

    Article  CAS  PubMed  Google Scholar 

  34. Moen MD, Keam SJ (2011) Denosumab: a review of its use in the treatment of postmenopausal osteoporosis. Drugs Aging 28:63–82

    Article  CAS  PubMed  Google Scholar 

  35. Bonabello A, Galmozzi MR, Bruzzese T et al (2001) Analgesic effect of bisphosphonates in mice. Pain 91:269–275

    Article  CAS  PubMed  Google Scholar 

  36. Fulfaro F, Casuccio A, Ticozzi C et al (1998) The role of bisphosphonates in the treatment of painful metastatic bone disease: a review of phase III trials. Pain 78:157–169

    Article  CAS  PubMed  Google Scholar 

  37. Van Offel JF, Schuerwegh AJ, Bridts CH et al (2001) Influence of cyclic intravenous pamidronate on proinflammatory monocytic cytokine profiles and bone density in rheumatoid arthritis treated with low dose prednisolone and methotrexate. Clin Exp Rheumatol 19:13–20

    PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that there is no conflict of interest for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Ohtori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, M., Inage, K., Sakuma, Y. et al. Anti-RANKL antibodies decrease CGRP expression in dorsal root ganglion neurons innervating injured lumbar intervertebral discs in rats. Eur Spine J 24, 2017–2022 (2015). https://doi.org/10.1007/s00586-015-4058-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-015-4058-z

Keywords

Navigation