Skip to main content
Log in

Effects of shear force on intervertebral disc: an in vivo rabbit study

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

A new in vivo rabbit model was developed to investigate the effects of shear force on intervertebral disc (IVD).

Methods

Japanese white rabbits (n = 38) were used for this study. The L4/5 discs in Group A (n = 10) were subjected to a constant shear force (50 N) using a custom-made external loading device for 1 month; in Group B (n = 10) for 2 months; whereas in Group C (n = 10), loading device was attached to the spine but the discs remained unloaded. Group D (n = 8) was a non-operated intact control group. After loading, the loading devices were taken out and the animals were given X-ray and MRI examination. After X-ray and MRI examination, the animals were euthanized for histological analysis.

Results

After 1 and 2 months of loading, radiographic findings showed significant disc height narrowing in L4/5 discs of the animals in loading groups, and slight lumbar spondylolisthesis in some animals of Group B. MRI showed a significant decrease in nucleus pulposus (NP) area and signal intensity from T2-weighted images. Histologically, loss of normal NP cells and disorganization of the architecture of the annulus occurred, and proteoglycan stain decreased.

Conclusions

The results of this study suggest that disc degeneration can be induced by hyper-physiological shear loading in the rabbit IVD. Long-term shear loading may result in structural disc failure inducing lumbar spondylolisthesis and progressive disc degeneration, which, however, has to be proven by further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stokes IAF, Iatridis JC (2004) Mechanical conditions that accelerate intervertebral disc degeneration: overload versus immobilization. Spine 29:2724–2732. doi:10.1097/01.brs.0000146049.52152.da

    Article  PubMed  Google Scholar 

  2. Setton LA, Chen J (2006) Mechanobiology of the intervertebral disc and relevance to disc degeneration. J Bone Joint Surg Am 88A:52–57. doi:10.2106/Jbjs.F.00001

    Article  Google Scholar 

  3. Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine 31:2151–2161. doi:10.1097/01.brs.0000231761.73859.2c

    Article  PubMed  Google Scholar 

  4. Iatridis JC, MacLean JJ, Roughley PJ, Alini M (2006) Effects of mechanical loading on intervertebral disc metabolism in vivo. J Bone Joint Surg Am 88A:41–46. doi:10.2106/Jbjs.E.01407

    Article  Google Scholar 

  5. Lotz JC, Colliou OK, Chin JR, Duncan NA, Liebenberg E (1998) 1998 Volvo Award winner in biomechanical studies—Compression-induced degeneration of the intervertebral disc: an in vivo mouse model and finite-element study. Spine 23:2493–2506. doi:10.1097/00007632-199812010-00004

    Article  CAS  PubMed  Google Scholar 

  6. Yurube T, Takada T, Hirata H, Kakutani K, Maeno K, Zhang ZY, Yamamoto J, Doita M, Kurosaka M, Nishida K (2011) Modified house-keeping gene expression in a rat tail compression loading-induced disc degeneration model. J Orthop Res 29:1284–1290. doi:10.1002/Jor.21406

    Article  CAS  PubMed  Google Scholar 

  7. Lai A, Chow DHK, Siu SW, Leung SS, Lau EFL, Tang FH, Pope MH (2008) Effects of Static compression with different loading magnitudes and durations on the intervertebral disc an in vivo rat-tail study. Spine 33:2721–2727. doi:10.1097/Brs.0b013e318180e688

    Article  PubMed  Google Scholar 

  8. Wuertz K, Godburn K, MacLean JJ, Barbir A, Donnelly JS, Roughley PJ, Alini M, Iatridis JC (2009) In vivo remodeling of intervertebral discs in response to short- and long-term dynamic compression. J Orthop Res 27:1235–1242. doi:10.1002/Jor.20867

    Article  PubMed Central  PubMed  Google Scholar 

  9. Hee HT, Chuah YJ, Tan BHM, Setiobudi T, Wong HK (2011) Vascularization and morphological changes of the endplate after axial compression and distraction of the intervertebral disc. Spine 36:505–511. doi:10.1097/Brs.0b013e3181d32410

    Article  PubMed  Google Scholar 

  10. Alini M, Eisenstein SM, Ito K, Little C, Kettler AA, Masuda K, Melrose J, Ralphs J, Stokes I, Wilke HJ (2008) Are animal models useful for studying human disc disorders/degeneration? Eur Spine J 17:2–19. doi:10.1007/s00586-007-0414-y

    Article  PubMed Central  PubMed  Google Scholar 

  11. Singh K, Masuda K, An HS (2005) Animal models for human disc degeneration. Spine J 5:267S–279S. doi:10.1016/j.spinee.2005.02.016

    Article  PubMed  Google Scholar 

  12. Lotz JC (2004) Animal models of intervertebral disc degeneration: lessons learned. Spine (Phila Pa 1976) 29:2742–2750

  13. Guehring T, Nerlich A, Kroeber M, Richter W, Omlor GW (2010) Sensitivity of notochordal disc cells to mechanical loading: an experimental animal study. Eur Spine J 19:113–121. doi:10.1007/s00586-009-1217-0

    Article  PubMed Central  PubMed  Google Scholar 

  14. Costi JJ, Stokes IA, Gardner-Morse M, Laible JP, Scoffone HM, Iatridis JC (2007) Direct measurement of intervertebral disc maximum shear strain in six degrees of freedom: motions that place disc tissue at risk of injury. J Biomech 40:2457–2466. doi:10.1016/j.jbiomech.2006.11.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Barbir A, Godburn KE, Michalek AJ, Lai A, Monsey RD, Iatridis JC (2011) Effects of torsion on intervertebral disc gene expression and biomechanics, using a rat tail model. Spine 36:607–614. doi:10.1097/Brs.0b013e3181d9b58b

    Article  PubMed Central  PubMed  Google Scholar 

  16. Walter BA, Korecki CL, Purmessur D, Roughley PJ, Michalek AJ, Iatridis JC (2011) Complex loading affects intervertebral disc mechanics and biology. Osteoarthr Cartilage 19:1011–1018. doi:10.1016/j.joca.2011.04.005

    Article  CAS  Google Scholar 

  17. Stokes IAF, McBride C, Aronsson DD, Roughley PJ (2011) Intervertebral disc changes with angulation, compression and reduced mobility simulating altered mechanical environment in scoliosis. Eur Spine J 20:1735–1744. doi:10.1007/s00586-011-1868-5

    Article  PubMed Central  PubMed  Google Scholar 

  18. Kim J, Yang SJ, Kim H, Kim Y, Park JB, DuBose C, Lim TH (2012) Effect of shear force on intervertebral disc (IVD) degeneration: an in vivo rat study. Ann Biomed Eng 40:1996–2004. doi:10.1007/s10439-012-0570-z

    Article  PubMed  Google Scholar 

  19. Chan SCW, Ferguson SJ, Gantenbein-Ritter B (2011) The effects of dynamic loading on the intervertebral disc. Eur Spine J 20:1796–1812. doi:10.1007/s00586-011-1827-1

    Article  PubMed Central  PubMed  Google Scholar 

  20. Masuda K, Aota Y, Muehleman C, Imai Y, Okuma M, Thonar EJ, Andersson GB, An HS (2005) A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration. Spine 30:5–14

    PubMed  Google Scholar 

  21. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 26:1873–1878

  22. Norcross JP, Lester GE, Weinhold P, Dahners LE (2003) An in vivo model of degenerative disc disease. J Orthop Res 21:183–188. doi:10.1016/S0736-0266(02)00098-0

    Article  CAS  PubMed  Google Scholar 

  23. Walsh AJL, Lotz JC (2004) Biological response of the intervertebral disc to dynamic loading. J Biomech 37:329–337. doi:10.1016/S0021-9290(03)00290-2

    Article  PubMed  Google Scholar 

  24. Marras WS, Davis KG, Ferguson SA, Lucas BR, Gupta P (2001) Spine loading characteristics of patients with low back pain compared with asymptomatic individuals. Spine 26:2566–2574. doi:10.1097/00007632-200112010-00009

    Article  CAS  PubMed  Google Scholar 

  25. Kroeber MW, Unglaub F, Wang HL, Schmid C, Thomsen M, Nerlich A, Richter W (2002) New in vivo animal model to create intervertebral disc degeneration and to investigate the effects of therapeutic strategies to stimulate disc regeneration. Spine 27:2684–2690. doi:10.1097/00007632-200212010-00007

    Article  PubMed  Google Scholar 

  26. Iatridis JC, Mente PL, Stokes IAF, Aronsson DD, Alini M (1999) Compression-induced changes in intervertebral disc properties in a rat tail model. Spine 24:996–1002. doi:10.1097/00007632-199905150-00013

    Article  CAS  PubMed  Google Scholar 

  27. Cappello R, Bird JLE, Pfeiffer D, Bayliss MT, Dudhia J (2006) Notochordal cell produce and assemble extracellular matrix in a distinct manner, which may be responsible for the maintenance of healthy nucleus pulposus. Spine 31:873–882. doi:10.1097/01.brs.0000209302.00820.fd

    Article  PubMed  Google Scholar 

  28. Zhao CQ, Wang LM, Jiang LS, Dai LY (2007) The cell biology of intervertebral disc aging and degeneration. Ageing Res Rev 6:247–261. doi:10.1016/j.arr.2007.08.001

    Article  PubMed  Google Scholar 

  29. Niggemann P, Kuchta J, Grosskurth D, Beyer HK, Hoeffer J, Delank KS (2012) Spondylolysis and isthmic spondylolisthesis: impact of vertebral hypoplasia on the use of the Meyerding classification. Brit J Radiol 85:358–362. doi:10.1259/Bjr/60355971

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Crawford NR, Cagli S, Sonntag VK, Dickman CA (2001) Biomechanics of grade I degenerative lumbar spondylolisthesis. Part 1: in vitro model. J Neurosurg 94:45–50

    CAS  PubMed  Google Scholar 

  31. Melnyk AD, Kingwell SP, Zhu Q, Chak JD, Cripton PA, Fisher CG, Dvorak MF, Oxland TR (2013) An in vitro model of degenerative lumbar spondylolisthesis. Spine (Phila Pa 1976) 38:E870–E877. doi:10.1097/BRS.0b013e3182945897

  32. Goel VK, Monroe BT, Gilbertson LG, Brinckmann P, Nat R (1995) Interlaminar shear stresses and laminae separation in a disc—finite-element analysis of the L3–L4 motion segment subjected to axial compressive loads. Spine 20:689–698. doi:10.1097/00007632-199503150-00010

    Article  CAS  PubMed  Google Scholar 

  33. Akhtar S, Davies JR, Caterson B (2005) Ultrastructural immunolocalization of alpha-elastin and keratan sulfate proteoglycan in normal and scoliotic lumbar disc. Spine (Phila Pa 1976) 30:1762–1769

  34. Sherratt MJ, Baldock C, Haston JL, Holmes DF, Jones CJ, Shuttleworth CA, Wess TJ, Kielty CM (2003) Fibrillin microfibrils are stiff reinforcing fibres in compliant tissues. J Mol Biol 332:183–193

    Article  CAS  PubMed  Google Scholar 

  35. Iatridis JC, ap Gwynn I (2004) Mechanisms for mechanical damage in the intervertebral disc annulus fibrosus. J Biomech 37:1165–1175. doi:10.1016/j.jbiomech.2003.12.026

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant from National Nature Foundation of china (Grant No. 81371988), Natural Science Foundation of Zhejiang Province for Distinguished Young Scholars (Grant No: LR12H06001), and Xinmiao talent plan of Zhejiang province (Grant No: 2013R413042).

Conflict of interest

None of the authors has any potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Yang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, DD., Lin, SL., Wang, XY. et al. Effects of shear force on intervertebral disc: an in vivo rabbit study. Eur Spine J 24, 1711–1719 (2015). https://doi.org/10.1007/s00586-015-3816-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-015-3816-2

Keywords

Navigation