Skip to main content
Log in

Needle puncture injury of the rat intervertebral disc affects torsional and compressive biomechanics differently

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

An Erratum to this article was published on 04 January 2011

Abstract

Needle puncture is a common method of inducing intervertebral disc (IVD) degeneration in small animal models and may have some similarities to IVD injury conditions such as herniation. Yet, the influence of puncture injuries on IVD biomechanics is not well understood. This study quantified the acute effects of anular injury on the biomechanics of rat caudal IVDs in compression and torsion following puncture with 30, 25 and 21 G needles. In compression, puncture injury reduced elastic stiffness by 20% for all needle sizes, but differences between control and punctured discs did not remain after compressive overload. In contrast, torsional parameters associated with anular fiber tension were affected proportionally with needle size. We conclude that IVD injuries that penetrate through the thickness of the annulus affect IVD biomechanics through different mechanisms for compression and torsion. Anular injuries affect torsional properties in a manner directly related to the amount of fiber disruption and compressive properties in a manner that affects pressurization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Urban JPG, Roberts S (2003) Degeneration of the intervertebral disc. Arthritis Res Ther 5:120–130

    Article  PubMed  Google Scholar 

  2. Iatridis JC, Michalek AJ, Purmessur D, Korecki CL (2009) Localized intervertebral disc injury leads to organ level changes in structure, cellularity, and biosynthesis. Cell Mol Bioeng 2:437–447

    Article  PubMed  Google Scholar 

  3. Pollintine P, van Tunen MS, Luo J, Brown MD, Dolan P, Adams MA (1976) Time-dependent compressive deformation of the ageing spine: relevance to spinal stenosis. Spine 35:386–394

    Article  Google Scholar 

  4. Costi JJ, Stokes IA, Gardner-Morse MG, Iatridis JC (2008) Frequency-dependent behavior of the intervertebral disc in response to each of six degree of freedom dynamic loading: solid phase and fluid phase contributions. Spine 33:1731–1738

    Article  PubMed  Google Scholar 

  5. Carragee EJ, Don AS, Hurwitz EL, Cuellar JM, Carrino J, Herzog R (2009) Does discography cause accelerated progression of degeneration changes in the lumbar disc: a ten-year matched cohort study. Spine 34:2338–2345

    Article  PubMed  Google Scholar 

  6. Aoki Y, Akeda K, An H, Muehleman C, Takahashi K, Moriya H, Masuda K (2006) Nerve fiber ingrowth into scar tissue formed following nucleus pulposus extrusion in the rabbit anular-puncture disc degeneration model: effects of depth of puncture. Spine 31:E774–E780

    Article  PubMed  Google Scholar 

  7. Kim KS, Yoon ST, Li J, Park JS, Hutton WC (2005) Disc degeneration in the rabbit: a biochemical and radiological comparison between four disc injury models. Spine 30:33–37

    Article  PubMed  Google Scholar 

  8. Korecki CL, Costi JJ, Iatridis JC (2008) Needle puncture injury affects intervertebral disc mechanics and biology in an organ culture model. Spine 33:235–241

    Article  PubMed  Google Scholar 

  9. Miyamoto K, Masuda K, Kim JG, Inoue N, Akeda K, Andersson GB, An HS (2006) Intradiscal injections of osteogenic protein-1 restore the viscoelastic properties of degenerated intervertebral discs. Spine J 6:692–703

    Article  PubMed  Google Scholar 

  10. Sobajima S, Kim JS, Gilbertson LG, Kang JD (2004) Gene therapy for degenerative disc disease. Gene Ther 11:390–401

    Article  CAS  PubMed  Google Scholar 

  11. Sobajima S, Kompel JF, Kim JS, Wallach CJ, Robertson DD, Vogt MT, Kang JD, Gilbertson LG (2005) A slowly progressive and reproducible animal model of intervertebral disc degeneration characterized by MRI, X-ray, and histology. Spine 30:15–24

    PubMed  Google Scholar 

  12. Hsieh AH, Hwang D, Ryan DA, Freeman AK, Kim H (2009) Degenerative anular changes induced by puncture are associated with insufficiency of disc biomechanical function. Spine 34:998–1005

    Article  PubMed  Google Scholar 

  13. Fazzalari NL, Costi JJ, Hearn TC, Fraser RD, Vernon-Roberts B, Hutchinson J, Manthey BA, Parkinson IH, Sinclair C (2001) Mechanical and pathologic consequences of induced concentric anular tears in an ovine model. Spine 26:2575–2581

    Article  CAS  PubMed  Google Scholar 

  14. Holm S, Ekstrom L, Kaigle Holm A, Hansson T (2007) Intradiscal pressure in the degenerated porcine intervertebral disc. Vet Comp Orthop Traumatol 20:29–33

    CAS  PubMed  Google Scholar 

  15. Kaigle A, Ekstrom L, Holm S, Rostedt M, Hansson T (1998) In vivo dynamic stiffness of the porcine lumbar spine exposed to cyclic loading: influence of load and degeneration. J Spinal Disord 11:65–70

    CAS  PubMed  Google Scholar 

  16. Keller TS, Holm SH, Hansson TH, Spengler DM (1990) 1990 Volvo Award in experimental studies. The dependence of intervertebral disc mechanical properties on physiologic conditions. Spine 15:751–761

    CAS  PubMed  Google Scholar 

  17. Thompson RE, Pearcy MJ, Barker TM (2004) The mechanical effects of intervertebral disc lesions. Clin Biomech (Bristol, Avon) 19:448–455

    Article  Google Scholar 

  18. Thompson RE, Pearcy MJ, Downing KJ, Manthey BA, Parkinson IH, Fazzalari NL (2000) Disc lesions and the mechanics of the intervertebral joint complex. Spine 25:3026–3035

    Article  CAS  PubMed  Google Scholar 

  19. Elliott DM, Yerramalli CS, Beckstein JC, Boxberger JI, Johannessen W, Vresilovic EJ (2008) The effect of relative needle diameter in puncture and sham injection animal models of degeneration. Spine 33:588–596

    Article  PubMed  Google Scholar 

  20. Beckstein JC, Sen S, Schaer TP, Vresilovic EJ, Elliott DM (2008) Comparison of animal discs used in disc research to human lumbar disc: axial compression mechanics and glycosaminoglycan content. Spine 33:E166–E173 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  21. Elliott DM, Sarver JJ (2004) Young investigator award winner: validation of the mouse and rat disc as mechanical models of the human lumbar disc. Spine 29:713–722 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  22. O’Connell GD, Vresilovic EJ, Elliott DM (2007) Comparison of animals used in disc research to human lumbar disc geometry. Spine 32:328–333 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  23. Espinoza Orias AA, Malhotra NR, Elliott DM (2008) Rat disc torsional mechanics: effect of lumbar and caudal levels and axial compression load. Spine J 9:204–209

    Google Scholar 

  24. Masuoka K, Michalek AJ, MacLean JJ, Stokes IA, Iatridis JC (2007) Different effects of static versus cyclic compressive loading on rat intervertebral disc height and water loss in vitro. Spine 32:1974–1979

    Article  PubMed  Google Scholar 

  25. MacLean JJ, Lee CR, Alini M, Iatridis JC (2005) The effects of short-term load duration on anabolic and catabolic gene expression in the rat tail intervertebral disc. J Orthop Res 23:1120–1127

    Article  CAS  PubMed  Google Scholar 

  26. Barbir A, Godburn KE, Michalek AJ, Lai A, Monsey RD, Iatridis J (2009) In vivo response of intervertebral discs to static and dynamic torsion. Orthopaedic Research Society, Las Vegas, NV

    Google Scholar 

  27. Pearcy M, Portek I, Shepherd J (1984) Three-dimensional X-ray analysis of normal movement in the lumbar spine. Spine 9:294–297 (Phila Pa 1976)

    Article  CAS  PubMed  Google Scholar 

  28. Veres SP, Robertson PA, Broom ND (2008) ISSLS Prize winner: microstructure and mechanical disruption of the lumbar disc annulus part II: how the annulus fails under hydrostatic pressure. Spine 33:2711–2720

    Article  PubMed  Google Scholar 

  29. Stokes I, Greenapple DM (1985) Measurement of surface deformation of soft tissue. J Biomech 18:1–7

    Article  CAS  PubMed  Google Scholar 

  30. Stokes IA (1987) Surface strain on human intervertebral discs. J Orthop Res 5:348–355

    Article  CAS  PubMed  Google Scholar 

  31. Adams MA, Green TP (1993) Tensile properties of the annulus fibrosus I. The contribution of fibre–matrix interactions to tensile stiffness and strength. Eur Spine J 2:203–208

    Article  CAS  PubMed  Google Scholar 

  32. Krismer M, Haid C, Rabl W (1996) The contribution of anulus fibers to torque resistance. Spine 21:2551–2557

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Iatridis.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00586-010-1666-5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michalek, A.J., Funabashi, K.L. & Iatridis, J.C. Needle puncture injury of the rat intervertebral disc affects torsional and compressive biomechanics differently. Eur Spine J 19, 2110–2116 (2010). https://doi.org/10.1007/s00586-010-1473-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-010-1473-z

Keywords

Navigation