Skip to main content
Log in

Localized Intervertebral Disc Injury Leads to Organ Level Changes in Structure, Cellularity, and Biosynthesis

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

A literature review and new data are presented to evaluate the influence of intervertebral disc (IVD) injury on biomechanics, cellularity, inflammation, and biosynthesis. Literature and new experimental evidence support the hypothesis that localized injury in the disc can lead to immediate and long-term organ level changes in biomechanics and biology of the IVD. Biomechanical properties defining motion segment bending behaviors sensitive to injuries that affect anulus fibrosus (AF) integrity and nucleus pulposus (NP) pressurization. Axial mechanics and IVD height measurements show sensitivity to puncture and other injuries that reduce NP pressurization. Torsional biomechanics are strongly affected by the extent and location of AF lesions but are less sensitive to reduced NP pressurization. IVD injuries such as puncture and stab incisions may also lead to a cascade of biological changes consistent with degeneration, including loss of cellularity, altered biosynthesis and inflammation. New results on effects of 25G needle injection of saline into a bovine IVD organ culture model demonstrated a loss of cellularity and down-regulation of matrix gene expression, providing a specific example of how a minor injury affects the IVD organ response. We conclude that localized injuries in the IVD can induce an organ level degenerative cascade through biomechanical and biological mechanisms, and their interactions. Attempts at IVD repair should target the dual biomechanical roles of the anulus of maintaining nucleus pressurization and transmitting loads across the vertebrae. Biologically, it remains important to maintain IVD cellularity and biosynthesis rates following injury to prevent downstream degenerative changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Acaroglu, E. R., J. C. Iatridis, L. A. Setton, R. J. Foster, V. C. Mow, and M. Weidenbaum. Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus. Spine 20(24):2690–2701, 1995.

    Article  Google Scholar 

  2. Adams, M. Laboratory model of lumbar disc protrusion: fissure and fragment. Spine 19(17):2015–2017, 1994.

    Article  Google Scholar 

  3. Adams, M. A., and P. Dolan. Spine biomechanics. J. Biomech. 38(10):1972–1983, 2005.

    Article  Google Scholar 

  4. Adams, M. A., D. S. McNally, and P. Dolan. ‘Stress’ distributions inside intervertebral discs. The effects of age and degeneration. J. Bone Joint Surg. Br. 78(6):965–972, 1996.

    Article  Google Scholar 

  5. Adams, M. A., and P. J. Roughley. What is intervertebral disc degeneration, and what causes it? Spine 31(18):2151–2161, 2006.

    Article  Google Scholar 

  6. Aladin, D. M., K. M. Cheung, D. Chan, A. F. Yee, J. J. Jim, K. D. Luk, and W. W. Lu. Expression of the Trp2 allele of COL9A2 is associated with alterations in the mechanical properties of human intervertebral discs. Spine 32(25):2820–2826, 2007.

    Article  Google Scholar 

  7. Alini, M., et al. Are animal models useful for studying human disc disorders/degeneration? Eur. Spine J. 17(1):2–19, 2008.

    Article  Google Scholar 

  8. An, H. S., and K. Masuda. Relevance of in vitro and in vivo models for intervertebral disc degeneration. J. Bone Joint Surg. Am. 88(Suppl 2):88–94, 2006.

    Article  Google Scholar 

  9. An, H. S., et al. Introduction: disc degeneration: summary. Spine 29(23):2677–2678, 2004.

    Article  Google Scholar 

  10. Antoniou, J., T. Steffen, F. Nelson, N. Winterbottom, A. P. Hollander, R. A. Poole, M. Aebi, and M. Alini. The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J. Clin. Invest. 98(4):996–1003, 1996.

    Article  Google Scholar 

  11. Aoki, Y., K. Akeda, H. An, C. Muehleman, K. Takahashi, H. Moriya, and K. Masuda. Nerve fiber ingrowth into scar tissue formed following nucleus pulposus extrusion in the rabbit anular-puncture disc degeneration model: effects of depth of puncture. Spine 31(21):E774–E780, 2006.

    Article  Google Scholar 

  12. Battie, M. C., and T. Videman. Lumbar disc degeneration: epidemiology and genetics. J. Bone Joint Surg. Am. 88(Suppl 2):3–9, 2006.

    Article  Google Scholar 

  13. Benneker, L. M., P. F. Heini, S. E. Anderson, M. Alini, and K. Ito. Correlation of radiographic and MRI parameters to morphological and biochemical assessment of intervertebral disc degeneration. Eur. Spine J. 14(1):27–35, 2005.

    Article  Google Scholar 

  14. Boxberger, J. I., J. D. Auerbach, S. Sen, and D. M. Elliott. An in vivo model of reduced nucleus pulposus glycosaminoglycan content in the rat lumbar intervertebral disc. Spine 33(2):146–154, 2008.

    Article  Google Scholar 

  15. Boxberger, J. I., S. Sen, C. S. Yerramalli, and D. M. Elliott. Nucleus pulposus glycosaminoglycan content is correlated with axial mechanics in rat lumbar motion segments. J. Orthop. Res. 24(9):1906–1915, 2006.

    Article  Google Scholar 

  16. Boyd, L. M., W. J. Richardson, K. D. Allen, C. Flahiff, L. Jing, Y. Li, J. Chen, and L. A. Setton. Early-onset degeneration of the intervertebral disc and vertebral end plate in mice deficient in type IX collagen. Arthritis Rheum. 58(1):164–171, 2008.

    Article  Google Scholar 

  17. Brinckmann, P., and R. W. Porter. A laboratory model of lumbar disc protrusion. Fissure and fragment. Spine 19(2):228–235, 1994.

    Article  Google Scholar 

  18. Cassidy, J. J., A. Hiltner, and E. Baer. Hierarchical structure of the intervertebral disc. Connect. Tissue Res. 23(1):75–88, 1989.

    Article  Google Scholar 

  19. Cheung, K. M., et al. Association of the Taq I allele in vitamin D receptor with degenerative disc disease and disc bulge in a Chinese population. Spine 31(10):1143–1148, 2006.

    Article  MathSciNet  Google Scholar 

  20. Costi, J. J., I. A. Stokes, M. G. Gardner-Morse, and J. C. Iatridis. Frequency-dependent behavior of the intervertebral disc in response to each of six degree of freedom dynamic loading: solid phase and fluid phase contributions. Spine 33(16):1731–1738, 2008.

    Article  Google Scholar 

  21. Court, C., J. R. Chin, E. Liebenberg, O. K. Colliou, and J. C. Lotz. Biological and mechanical consequences of transient intervertebral disc bending. Eur. Spine J. 16(11):1899–1906, 2007.

    Article  Google Scholar 

  22. de Visser, H., C. Rowe, and M. Pearcy. A robotic testing facility for the measurement of the mechanics of spinal joints. Proc. Inst. Mech. Eng. [H] 221(3):221–227, 2007.

    Google Scholar 

  23. Elliott, D. M., C. S. Yerramalli, J. I. Boxberger, W. Johannessen, and E. J. Vresilovic. The effect of relative needle diameter in puncture and sham injection animal models of degeneration. Spine 33(6):588–596, 2008.

    Article  Google Scholar 

  24. Evans, C. Potential biologic therapies for the intervertebral disc. J. Bone Joint Surg. Am. 88(Suppl 2):95–98, 2006.

    Article  Google Scholar 

  25. Fazzalari, N. L., J. J. Costi, T. C. Hearn, R. D. Fraser, B. Vernon-Roberts, J. Hutchinson, B. A. Manthey, I. H. Parkinson, and C. Sinclair. Mechanical and pathologic consequences of induced concentric anular tears in an ovine model. Spine 26(23):2575–2581, 2001.

    Article  Google Scholar 

  26. Gu, W. Y., H. Yao, A. L. Vega, and D. Flagler. Diffusivity of ions in agarose gels and intervertebral disc: effect of porosity. Ann. Biomed. Eng. 32(12):1710–1717, 2004.

    Article  Google Scholar 

  27. Han, B., K. Zhu, F. C. Li, Y. X. Xiao, J. Feng, Z. L. Shi, M. Lin, J. Wang, and Q. X. Chen. A simple disc degeneration model induced by percutaneous needle puncture in the rat tail. Spine 33(18):1925–1934, 2008.

    Article  Google Scholar 

  28. Haschtmann, D., J. V. Stoyanov, P. Gedet, and S. J. Ferguson. Vertebral endplate trauma induces disc cell apoptosis and promotes organ degeneration in vitro. Eur. Spine J. 17(2):289–299, 2008.

    Article  Google Scholar 

  29. Holm, S., L. Ekstrom, A. Kaigle Holm, and T. Hansson. Intradiscal pressure in the degenerated porcine intervertebral disc. Vet. Comp. Orthop. Traumatol. 20(1):29–33, 2007.

    Google Scholar 

  30. Horner, H. A., and J. P. Urban. 2001 Volvo Award Winner in Basic Science Studies: effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine 26(23):2543–2549, 2001.

    Article  Google Scholar 

  31. Hsieh, A. H., D. Hwang, D. A. Ryan, A. K. Freeman, and H. Kim. Degenerative anular changes induced by puncture are associated with insufficiency of disc biomechanical function. Spine 34(10):998–1005, 2009.

    Article  Google Scholar 

  32. Iatridis, J. C., J. J. MacLean, and D. A. Ryan. Mechanical damage to the intervertebral disc annulus fibrosus subjected to tensile loading. J. Biomech. 38(3):557–565, 2005.

    Article  Google Scholar 

  33. Johannessen, W., and D. M. Elliott. Effects of degeneration on the biphasic material properties of human nucleus pulposus in confined compression. Spine 30(24):E724–E729, 2005.

    Article  Google Scholar 

  34. Kaigle, A., S. Holm, M. Rostedt, and T. Hansson. In vivo dynamic stiffness of the porcine lumbar spine exposed to cyclic loading: influence of load and degeneration. J. Spinal Disord. 11(1):65–70, 1998.

    Article  Google Scholar 

  35. Kawaguchi, Y., R. Osada, M. Kanamori, H. Ishihara, K. Ohmori, H. Matsui, and T. Kimura. Association between an aggrecan gene polymorphism and lumbar disc degeneration. Spine 24(23):2456–2460, 1999.

    Article  Google Scholar 

  36. Keller, T. S., S. H. Holm, T. H. Hansson, and D. M. Spengler. 1990 Volvo Award in experimental studies. The dependence of intervertebral disc mechanical properties on physiologic conditions. Spine 15(8):751–761, 1990.

    Article  Google Scholar 

  37. Kim, K. S., S. T. Yoon, J. Li, J. S. Park, and W. C. Hutton. Disc degeneration in the rabbit: a biochemical and radiological comparison between four disc injury models. Spine 30(1):33–37, 2005.

    Google Scholar 

  38. Korecki, C. L., J. J. Costi, and J. C. Iatridis. Needle puncture injury affects intervertebral disc mechanics and biology in an organ culture model. Spine 33(3):235–241, 2008.

    Article  Google Scholar 

  39. Korecki, C. L., J. J. MacLean, and J. C. Iatridis. Characterization of an in vitro intervertebral disc organ culture system. Eur. Spine J. 16(7):1029–1037, 2007.

    Article  Google Scholar 

  40. Krismer, M., C. Haid, and W. Rabl. The contribution of anulus fibers to torque resistance. Spine 21(22):2551–2557, 1996.

    Article  Google Scholar 

  41. Le Maitre, C. L., A. J. Freemont, and J. A. Hoyland. The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res. Ther. 7(4):R732–R745, 2005.

    Article  Google Scholar 

  42. Levicoff, E. A., et al. Safety assessment of intradiscal gene therapy II: effect of dosing and vector choice. Spine 33(14):1509–1516, 2008 (discussion 1517).

    Article  Google Scholar 

  43. Livak, K. J., and T. D. Schmittgen. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408, 2001.

    Article  Google Scholar 

  44. Lotz, J. C., and J. A. Ulrich. Innervation, inflammation, and hypermobility may characterize pathologic disc degeneration: review of animal model data. J. Bone Joint Surg. Am. 88(Suppl 2):76–82, 2006.

    Article  Google Scholar 

  45. Masuda, K., T. R. Oegema, Jr., and H. S. An. Growth factors and treatment of intervertebral disc degeneration. Spine 29(23):2757–2769, 2004.

    Article  Google Scholar 

  46. Michalek, A. J., K. L. Funabashi, and J. C. Iatridis. The interactive effects of needle puncture injury and compressive overload on the biomechanics of rat intervertebral discs. In: 55th Annual Meeting of the Orthopaedic Research Society, 2009.

  47. Miyamoto, K., K. Masuda, J. G. Kim, N. Inoue, K. Akeda, G. B. Andersson, and H. S. An. Intradiscal injections of osteogenic protein-1 restore the viscoelastic properties of degenerated intervertebral discs. Spine J. 6(6):692–703, 2006.

    Article  Google Scholar 

  48. Natarajan, R. N., G. B. Andersson, A. G. Patwardhan, and S. Verma. Effect of annular incision type on the change in biomechanical properties in a herniated lumbar intervertebral disc. J. Biomech. Eng. 124(2):229–236, 2002.

    Article  Google Scholar 

  49. Perie, D. S., J. J. Maclean, J. P. Owen, and J. C. Iatridis. Correlating material properties with tissue composition in enzymatically digested bovine annulus fibrosus and nucleus pulposus tissue. Ann. Biomed. Eng. 34(5):769–777, 2006.

    Article  Google Scholar 

  50. Purmessur, D., A. J. Freemont, and J. A. Hoyland. Expression and regulation of neurotrophins in the non-degenerate and degenerate human intervertebral disc. Arthritis Res. Ther. 10(4):R99, 2008.

    Article  Google Scholar 

  51. Roberts, S., J. P. Urban, H. Evans, and S. M. Eisenstein. Transport properties of the human cartilage endplate in relation to its composition and calcification. Spine 21(4):415–420, 1996.

    Article  Google Scholar 

  52. Roughley, P. J. Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix. Spine 29(23):2691–2699, 2004.

    Article  Google Scholar 

  53. Roughley, P., D. Martens, J. Rantakokko, M. Alini, F. Mwale, and J. Antoniou. The involvement of aggrecan polymorphism in degeneration of human intervertebral disc and articular cartilage. Eur. Cell. Mater. 11:1–7, 2006 (discussion 7).

    Google Scholar 

  54. Rousseau, M. A., E. C. Bass, A. G. Rodriguez, J. J. Liu, and J. C. Lotz. Stab incision for inducing intervertebral disc degeneration in the rat. Spine 32(1):17–24, 2007.

    Article  Google Scholar 

  55. Schmidt, T. A., H. S. An, T. H. Lim, B. H. Nowicki, and V. M. Haughton. The stiffness of lumbar spinal motion segments with a high-intensity zone in the anulus fibrosus. Spine 23(20):2167–2173, 1998.

    Article  Google Scholar 

  56. Seguin, C. A., M. Bojarski, R. M. Pilliar, P. J. Roughley, and R. A. Kandel. Differential regulation of matrix degrading enzymes in a TNFalpha-induced model of nucleus pulposus tissue degeneration. Matrix Biol. 25(7):409–418, 2006.

    Article  Google Scholar 

  57. Sobajima, S., J. S. Kim, L. G. Gilbertson, and J. D. Kang. Gene therapy for degenerative disc disease. Gene Ther. 11(4):390–401, 2004.

    Article  Google Scholar 

  58. Sobajima, S., J. F. Kompel, J. S. Kim, C. J. Wallach, D. D. Robertson, M. T. Vogt, J. D. Kang, and L. G. Gilbertson. A slowly progressive and reproducible animal model of intervertebral disc degeneration characterized by MRI, X-ray, and histology. Spine 30(1):15–24, 2005.

    Google Scholar 

  59. Sobajima, S., A. L. Shimer, R. C. Chadderdon, J. F. Kompel, J. S. Kim, L. G. Gilbertson, and J. D. Kang. Quantitative analysis of gene expression in a rabbit model of intervertebral disc degeneration by real-time polymerase chain reaction. Spine J. 5(1):14–23, 2005.

    Article  Google Scholar 

  60. Solovieva, S., J. Lohiniva, P. Leino-Arjas, R. Raininko, K. Luoma, L. Ala-Kokko, and H. Riihimaki. Intervertebral disc degeneration in relation to the COL9A3 and the IL-1ss gene polymorphisms. Eur. Spine J. 15(5):613–619, 2006.

    Article  Google Scholar 

  61. Stokes, I. A., and J. C. Iatridis. Mechanical conditions that accelerate intervertebral disc degeneration: overload versus immobilization. Spine 29(23):2724–2732, 2004.

    Article  Google Scholar 

  62. Thompson, R. E., M. J. Pearcy, and T. M. Barker. The mechanical effects of intervertebral disc lesions. Clin Biomech (Bristol, Avon) 19(5):448–455, 2004.

    Article  Google Scholar 

  63. Thompson, R. E., M. J. Pearcy, K. J. Downing, B. A. Manthey, I. H. Parkinson, and N. L. Fazzalari. Disc lesions and the mechanics of the intervertebral joint complex. Spine 25(23):3026–3035, 2000.

    Article  Google Scholar 

  64. Thompson, J. P., R. H. Pearce, M. T. Schechter, M. E. Adams, I. K. Tsang, and P. B. Bishop. Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc. Spine 15(5):411–415, 1990.

    Article  Google Scholar 

  65. Urban, J. P., S. Smith, and J. C. Fairbank. Nutrition of the intervertebral disc. Spine 29(23):2700–2709, 2004.

    Article  Google Scholar 

  66. van Deursen, D. L., C. J. Snijders, I. Kingma, and J. H. van Dieen. In vitro torsion-induced stress distribution changes in porcine intervertebral discs. Spine 26(23):2582–2586, 2001.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the National Institute of Health (R01 AR051146), the AO Foundation, and The NASA Vermont Space Grant Consortium (NNX07AK92A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Iatridis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iatridis, J.C., Michalek, A.J., Purmessur, D. et al. Localized Intervertebral Disc Injury Leads to Organ Level Changes in Structure, Cellularity, and Biosynthesis. Cel. Mol. Bioeng. 2, 437–447 (2009). https://doi.org/10.1007/s12195-009-0072-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-009-0072-8

Keywords

Navigation