Skip to main content
Log in

Root endophyte interaction between ectomycorrhizal basidiomycete Tricholoma matsutake and arbuscular mycorrhizal tree Cedrela odorata, allowing in vitro synthesis of rhizospheric “shiro”

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The ectomycorrhizal basidiomycete Tricholoma matsutake associates with members of the Pinaceae such as Pinus densiflora (red pine), forming a rhizospheric colony or “shiro,” which produces the prized “matsutake” mushroom. We investigated whether the host specificity of T. matsutake to conifers is innately determined using somatic plants of Cedrela odorata, a tropical broad-leaved tree (Meliaceae) that naturally harbors arbuscular mycorrhizal fungi. We found that T. matsutake could form in vitro shiro with C. odorata 140 days after inoculation, as with P. densiflora. The shiro was typically aromatic like that of P. densiflora. However, this was a root endophytic interaction unlike the mycorrhizal association with P. densiflora. Infected plants had epidermal tissues and thick exodermal tissues outside the inner cortex. The mycelial sheath surrounded the outside of the epidermis, and the hyphae penetrated into intra- and intercellular spaces, often forming hyphal bundles or a pseudoparenchymatous organization. However, the hyphae grew only in the direction of vascular bundles and did not form Hartig nets. Tricholoma fulvocastaneum or “false matsutake” naturally associates with Fagaceae and was also able to associate with C. odorata as a root endophyte. With T. matsutake, C. odorata generated a number of roots and showed greatly enhanced vigor, while with T. fulvocastaneum, it generated a smaller number of roots and showed somewhat lesser vigor. We argue that the host–plant specificity of ectomycorrhizal matsutake is not innately determined, and that somatic arbuscular mycorrhizal plants have a great potential to form mutualistic relationships with ectomycorrhizal fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ashford AE, Allaway WG (1982) A sheathing mycorrhiza on Pisonia grandis R. Br. (Nyctaginaceae) with development of transfer cells rather than a Hartig net. New Phytol 90:511–519

    Article  Google Scholar 

  • Beauchamp VB, Stromberg JC, Stutz JC (2006) Arbuscular mycorrhizal fungi associated with Populus-Salix stands in a semiarid riparian ecosystem. New Phytol 170:369–380

    Article  PubMed  Google Scholar 

  • Brundertt MC, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. Australian Centre for International Agricultural Research, Canberra, Australia, pp 1–374

    Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Bruns TD, Bidartondo MI, Taylor DL (2002) Host specificity in ectomycorrhizal communities: what do the exceptions tell us. Integr Comp Biol 42:352–359

    Article  PubMed  Google Scholar 

  • Danell E, Camacho FJ (1997) Successful cultivation of the golden chanterelle. Nature 385:303

    Article  CAS  Google Scholar 

  • Godbout C, Fortin FA (1985) Synthesized ectomycorrhizae of aspen: fungal genus level of structural characterization. Can J Bot 63:252–262

    Article  Google Scholar 

  • Guerin-Laguette A, Matsushita N, Lapeyrie F, Shindo K, Suzuki K (2005) Successful inoculation of mature pine with Tricholoma matsutake. Mycorrhiza 15:301–305

    Article  PubMed  Google Scholar 

  • Hall IR, Wang Y, Amicucci A (2003) Cultivation of edible ectomycorrhizal mushrooms. Trends Biotechnol 21:433–438

    Article  PubMed  CAS  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic, London, UK, pp 1–483

    Google Scholar 

  • Haug I, Lempe J, Homeier J, Weiß M, Setaro S, Oberwinkler F, Kottke I (2004) Graffenrieda emarginata (Melastomataceae) forms mycorrhizas with Glomeromycota and with a member of the Hymenoscyphus ericae aggregate in the organic soil of a neotropical mountain rain forest. Can J Bot 82:340–356

    Article  Google Scholar 

  • Haug I, Weiß M, Homeier J, Oberwinkler F, Kottke I (2005) Russulaceae and Thelephoraceae form ectomycorrhizas with members of the Nyctaginaceae (Caryophyllales) in the tropical mountain rain forest of southern Ecuador. New Phytol 165:923–936

    Article  PubMed  CAS  Google Scholar 

  • Hosford D, Pilz D, Molina R, Amaranthus M (1997) Ecology and management of the commercially harvested American matsutake mushroom. USDA Forest service PNW-GTR-412

  • Langer I, Krpata D, Peintner U, Winzel WW, Schweiger P (2008) Media formulation influences in vitro ectomycorrhizal synthesis on the European aspen Populus tremula L. Mycorrhiza 18:297–307

    Article  PubMed  CAS  Google Scholar 

  • Lian C, Narimatsu M, Nara K, Hogetsu T (2006) Tricholoma matsutake in a natural Pinus densiflora forest: correspondence between above- and below-ground genets, association with multiple host trees and alteration of existing ectomycorrhizal communities. New Phytol 171:825–836

    Article  PubMed  Google Scholar 

  • Maruyama TE (2009) Polyethylene glycol improves somatic embryo maturation in big-leaf mahogany (Swietenia macrophylla King, Meliaceae). Bull FFPRI 8:167–173

    CAS  Google Scholar 

  • Maruyama E, Ishii K, Sato A, Migita K (1989) Micropropagation of cedro (Cedrela odorata L.) by shoot-tip culture. J Jpn For Soc 71:329–331

    Google Scholar 

  • Maruyama E, Hosoi Y, Ishii K (2005) Propagation of Japanese red pine (Pinus densiflora Zieb. et Zucc.) via somatic embryogenesis. Propag Ornam Plants 5:199–204

    Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbiosis: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, New York, pp 357–423

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murata H, Yamada A, Babasaki K (1999) Identification of repetitive sequences containing motifs of retrotransposons in the ectomycorrhizal basidiomycete Tricholoma matsutake. Mycologia 91:766–775

    Article  CAS  Google Scholar 

  • Murata H, Ohta A, Yamada A, Narimatsu M, Futamura N (2005) Genetic mosaics in the massive persisting rhizosphere colony “shiro” of the ectomycorrhizal basidiomycete Tricholoma matsutake. Mycorrhiza 15:505–512

    Article  PubMed  CAS  Google Scholar 

  • Ogawa M (1976) Microbial ecology of ‘Shiro’ in Tricholoma matsutake (S. Ito et Imai) Sing. and its allied species. III Tricholoma matsutake in Picea glehnii and Picea glehnii-Abies sachalinensis forests. Trans Mycol Soc Japan 17:188–198

    Google Scholar 

  • Ogawa M (1977) Microbial ecology of ‘Shiro’ in Tricholoma matsutake (S. Ito et Imai) Sing. and its allied species. IV Tricholoma matsutake in Tsuga diversifolia forests. Trans Mycol Soc Jpn 18:20–33

    Google Scholar 

  • Ogawa M (1978) The biology of matsutake. Tsukiji-shokan, Tokyo (Japanese), pp 1–333

    Google Scholar 

  • Ohta A (1994) Production of fruit-bodies of a mycorrhizal fungus, Lyophyllum shimeji, in pure culture. Mycoscience 35:147–151

    Article  Google Scholar 

  • Ohta A (1998) Fruit-body production of two ectomycorrhizal fungi in the genus Hebeloma in pure culture. Mycoscience 39:15–19

    Article  Google Scholar 

  • Ohta A, Fujiwara N (2003) Fruit-body production of an ectomycorrhizal fungus in genus Boletus in pure culture. Mycoscience 44:295–300

    Article  Google Scholar 

  • Ota Y, Yamanaka T, Murata H, Neda H, Ohta A, Kawai M, Yamada A, Konno M, Tanaka C (2012) Phylogenetic relationship and species delimitation of “matsutake” and allied species based on multilocus phylogeny and haplotype analyses. Mycologia. doi:10.3852/12-068

  • Peterson RL, Massicotte HB, Melville LH (2004) Mycorrhizas: anatomy and cell biology. CABI Publishing, Ottawa, pp 1–173

    Google Scholar 

  • Rooney DC, Prosser JI, Bending GD, Baggs EM, Killham K, Hodge A (2011) Effect of arbuscular mycorrhizal colonisation on the growth and phosphorus nutrition of Populus euramericana c.v. Ghoy. Biomass Bioenergy 35:4605–4612

    Article  CAS  Google Scholar 

  • Sanmee R, Lumyong P, Dell B, Lumyong S (2010) In vitro cultivation and fruit body formation of the black bolete, Phlebopus portentosus, a popular edible ectomycorrhizal fungus in Thailand. Mycoscience 51:15–22

    Article  Google Scholar 

  • Shi ZY, Chen YL, Feng G, Liu RJ, Christie P, Li XL (2006) Arbuscular mycorrhizal fungi associated with the Meliaceae on Hainan island, China. Mycorrhiza 16:81–87

    Article  PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic/Elsevier, London, UK, pp 1–787

    Book  Google Scholar 

  • Urgiles N, Loján P, Aguirre N, Blaschke H, Günter S, Stimm B, Kottke I (2009) Application of mycorrhizal roots improves growth of tropical tree seedlings in the nursery: a step towards reforestation with native species in the Andes of Ecuador. New Forest 38:229–239

    Article  Google Scholar 

  • Vaario LM, Pennanen T, Sarjala T, Savonen EM, Heinonsalo J (2010) Ectomycorrhization of Tricholoma matsutake and two major conifers in Finland–an assessment of in vitro mycorrhiza formation. Mycorrhiza 20:511–518

    Google Scholar 

  • Vozzo JA, Hacskaylo E (1974) Endo- and ectomycorrhizal associations in five Populus species. Bull Torrey Bot Club 101:182–186

    Article  Google Scholar 

  • Yamada A, Maeda K, Ohmada M (1999) Ectomycorrhizal formation of Tricholoma matsutake isolates on seedlings of Pinus densiflora in vitro. Mycoscience 40:455–463

    Article  Google Scholar 

  • Yamada A, Maeda K, Kobayashi H, Murata H (2006) Ectomycorrhizal symbiosis in vitro between Tricholoma matsutake and Pinus densiflora seedlings that resembles naturally occurring ‘shiro’. Mycorrhiza 16:111–116

    Article  PubMed  Google Scholar 

  • Yamada A, Kobayashi H, Murata H, Kalmiş E, Kalyoncu F, Fukuda M (2010) In vitro ectomycorrhizal specificity between the Asian red pine Pinus densiflora and Tricholoma matsutake and allied species from worldwide Pinaceae and Fagaceae forests. Mycorrhiza 20:333–339

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Institute for Fermentation, Osaka, Japan, and from the Forestry and Forest Products Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Murata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murata, H., Yamada, A., Maruyama, T. et al. Root endophyte interaction between ectomycorrhizal basidiomycete Tricholoma matsutake and arbuscular mycorrhizal tree Cedrela odorata, allowing in vitro synthesis of rhizospheric “shiro”. Mycorrhiza 23, 235–242 (2013). https://doi.org/10.1007/s00572-012-0466-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-012-0466-7

Keywords

Navigation