Skip to main content
Log in

Impact of clinical factors and UGT1A9 and CYP2B6 genotype on inter-individual differences in propofol pharmacokinetics

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

Propofol is one of the most widely used fast-acting intravenously administered anesthetics. However, although large inter-individual differences in dose requirements and recovery time have been observed, there are few previous studies in which the association between several potential covariates, including genetic factors such as the UGT1A9 and CYP2B6 genotypes, and propofol pharmacokinetics was simultaneously examined. This study aimed to identify factors determining propofol pharmacokinetics.

Methods

Eighty-three patients were enrolled, and their blood samples were collected 1, 5, 10, and 15 min after administering a single intravenous bolus of propofol at a dose of 2.0 ml/kg to measure propofol plasma concentration. Area under the time–plasma concentration curve from zero up to the last measurable time point (AUC15min) was determined from the concentration data. The inter-individual variability of the propofol pharmacokinetics was evaluated by investigating relationships between AUC15min and genotype of UGT1A9 and CYP2B6; clinical factors, such as age, sex, body mass index (BMI), and preoperative hematological examination; and hemodynamic variables measured by a pulse dye densitogram analyzer. The Spearman rank correlation coefficient and the Mann–Whitney U test were used for the statistical analysis of continuous and categorical values, respectively. Subsequently, clinical factors that had p values of < 0.05 in the univariate analysis were examined in a multivariate analysis using multiple linear regression analysis.

Results

Age, BMI, indocyanine green disappearance ratio (K-ICG), hepatic blood flow (HBF), preoperative hemoglobin level, and sex were correlated with AUC15min (p < 0.05) in univariate analysis. Multivariate analysis performed to adjust for age, BMI, K-ICG, HBF, preoperative hemoglobin level, and sex revealed only BMI as an independent factor associated with AUC15min.

Conclusions

This study demonstrated that BMI influences propofol pharmacokinetics after its administration as a single intravenous injection, while UGT1A9 and CYP2B6 SNPs, other clinical factors, and hemodynamic variables do not. These results suggest that BMI is an independent factor associated with propofol pharmacokinetics in several potential covariates.

Clinical trials registration number

University Hospital Medical Information Network (UMIN000022948).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Glen JB, Hunter SC. Pharmacology of an emulsion formulation of ICI 35 868. Br J Anaesth. 1984;56:617–26.

    Article  CAS  PubMed  Google Scholar 

  2. Iohom G, Ni Chonghaile M, O’Brien JK, Cunningham AJ, Fitzgerald DF, Shields DC. An investigation of potential genetic determinants of propofol requirements and recovery from anaesthesia. Eur J Anaesthesiol. 2007;24:912–9.

    Article  CAS  PubMed  Google Scholar 

  3. Choong E, Loryan I, Lindqvist M, Nordling A, el Bouazzaoui S, van Schaik RH, Johansson I, Jakobsson J, Ingelman-Sundberg M. Sex difference in formation of propofol metabolites: a replication study. Basic Clin Pharmacol Toxicol. 2013;113:126–31.

    Article  CAS  PubMed  Google Scholar 

  4. Mastrogianni O, Gbandi E, Orphanidis A, Raikos N, Goutziomitrou E, Kolibianakis EM, Tarlatzis BC, Goulas A. Association of the CYP2B6 c.516G>T polymorphism with high blood propofol concentrations in women from Northern Greece. Drug Metab Pharmacokinet. 2014;29:215–8.

    Article  CAS  PubMed  Google Scholar 

  5. Hoymork SC, Raeder J, Grimsmo B, Steen PA. Bispectral index, serum drug concentrations and emergence associated with individually adjusted target-controlled infusions of remifentanil and propofol for laparoscopic surgery. Br J Anaesth. 2003;91:773–80.

    Article  CAS  PubMed  Google Scholar 

  6. Hoymork SC, Raeder J. Why do women wake up faster than men from propofol anaesthesia? Br J Anaesth. 2005;95:627–33.

    Article  CAS  PubMed  Google Scholar 

  7. Gan TJ, Glass PS, Sigl J, Sebel P, Payne F, Rosow C, Embree P. Women emerge from general anesthesia with propofol/alfentanil/nitrous oxide faster than men. Anesthesiology. 1999;90:1283–7.

    Article  CAS  PubMed  Google Scholar 

  8. Tachibana N, Niiyama Y, Yamakage M. Evaluation of bias in predicted and measured propofol concentrations during target-controlled infusions in obese Japanese patients: an open-label comparative study. Eur J Anaesthesiol. 2014;31:701–7.

    Article  CAS  PubMed  Google Scholar 

  9. Hiraoka H, Yamamoto K, Miyoshi S, Morita T, Nakamura K, Kadoi Y, Kunimoto F, Horiuchi R. Kidneys contribute to the extrahepatic clearance of propofol in humans, but not lungs and brain. Br J Clin Pharmacol. 2005;60:176–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yufune S, Takamatsu I, Masui K, Kazama T. Effect of remifentanil on plasma propofol concentration and bispectral index during propofol anaesthesia. Br J Anaesth. 2011;106:208–14.

    Article  CAS  PubMed  Google Scholar 

  11. Girard H, Court MH, Bernard O, Fortier LC, Villeneuve L, Hao Q, Greenblatt DJ, von Moltke LL, Perussed L, Guillemette C. Identification of common polymorphisms in the promoter of the UGT1A9 gene: evidence that UGT1A9 protein and activity levels are strongly genetically controlled in the liver. Pharmacogenetics. 2004;14:501–15.

    Article  CAS  PubMed  Google Scholar 

  12. Court MH, Duan SX, Hesse LM, Venkatakrishnan K, Greenblatt DJ. Cytochrome P-450 2B6 is responsible for interindividual variability of propofol hydroxylation by human liver microsomes. Anesthesiology. 2001;94:110–9.

    Article  CAS  PubMed  Google Scholar 

  13. Mikstacki A, Zakerska-Banaszak O, Skrzypczak-Zielinska M, Tamowicz B, Prendecki M, Dorszewska J, Molinska-Glura M, Waszak M, Slomski R. The effect of UGT1A9, CYP2B6 and CYP2C9 genes polymorphism on individual differences in propofol pharmacokinetics among Polish patients undergoing general anaesthesia. J Appl Genet. 2017;58:213–20.

    Article  CAS  PubMed  Google Scholar 

  14. Saito Y, Sai K, Maekawa K, Kaniwa N, Shirao K, Hamaguchi T, Yamamoto N, Kunitoh H, Ohe Y, Yamada Y, Tamura T, Yoshida T, Minami H, Ohtsu A, Matsumura Y, Saijo N, Sawada J. Close association of UGT1A9 IVS1+399C>T with UGT1A1*28, *6, or *60 haplotype and its apparent influence on 7-ethyl-10-hydroxycamptothecin (SN-38) glucuronidation in Japanese. Drug Metab Dispos. 2009;37:272–6.

    Article  CAS  PubMed  Google Scholar 

  15. Girard H, Villeneuve L, Court MH, Fortier LC, Caron P, Hao Q, von Moltke LL, Greenblatt DJ, Guillemette C. The novel UGT1A9 intronic I399 polymorphism appears as a predictor of 7-ethyl-10-hydroxycamptothecin glucuronidation levels in the liver. Drug Metab Dispos. 2006;34:1220–8.

    Article  CAS  PubMed  Google Scholar 

  16. Klein K, Lang T, Saussele T, Barbosa-Sicard E, Schunck WH, Eichelbaum M, Schwab M, Zanger UM. Genetic variability of CYP2B6 in populations of African and Asian origin: allele frequencies, novel functional variants, and possible implications for anti-HIV therapy with efavirenz. Pharmacogenet Genom. 2005;15:861–73.

    Article  CAS  Google Scholar 

  17. Tsuchiya K, Gatanaga H, Tachikawa N, Teruya K, Kikuchi Y, Yoshino M, Kuwahara T, Shirasaka T, Kimura S, Oka S. Homozygous CYP2B6 *6 (Q172H and K262R) correlates with high plasma efavirenz concentrations in HIV-1 patients treated with standard efavirenz-containing regimens. Biochem Biophys Res Commun. 2004;319:1322–6.

    Article  CAS  PubMed  Google Scholar 

  18. Loryan I, Lindqvist M, Johansson I, Hiratsuka M, van der Heiden I, van Schaik RH, Jakobsson J, Ingelman-Sundberg M. Influence of sex on propofol metabolism, a pilot study: implications for propofol anesthesia. Eur J Clin Pharmacol. 2012;68:397–406.

    Article  CAS  PubMed  Google Scholar 

  19. Miyakawa H, Tateda T, Kobayashi Y, Yokozuka M, Kumai T, Inoue S. Effect of CYP2B6 and UGT1A9 genotypes on difference in predicted and measured propofol concentration after propofol anesthesia. J St Marianna Univ. 2016;44:117–27 (in Japanese).

    Google Scholar 

  20. Itakura S, Masui K, Kazama T. Rapid infusion of hydroxyethyl starch 70/0.5 but not Acetate Ringer’s solution decreases the plasma concentration of propofol during target-controlled infusion. Anesthesiology. 2016;125:304–12.

    Article  CAS  PubMed  Google Scholar 

  21. Kansaku F, Kumai T, Sasaki K, Yokozuka M, Shimizu M, Tateda T, Murayama N, Kobayashi S, Yamazaki H. Individual differences in pharmacokinetics and pharmacodynamics of anesthetic agent propofol with regard to CYP2B6 and UGT1A9 genotype and patient age. Drug Metab Pharmacokinet. 2011;26:532–7.

    Article  CAS  PubMed  Google Scholar 

  22. Yonekura H, Murayama N, Yamazaki H, Sobue K. A case of delayed emergence after propofol anesthesia: genetic analysis. A A Case Rep. 2016;7:243–6.

    Article  PubMed  Google Scholar 

  23. Wilkinson GR, Shand DG. Commentary: a physiological approach to hepatic drug clearance. Clin Pharmacol Ther. 1975;18:377–90.

    Article  CAS  PubMed  Google Scholar 

  24. Mangoni AA, Jackson SH. Age-related changes in pharmacokinetics and pharmacodynamics: basic principles and practical applications. Br J Clin Pharmacol. 2004;57:6–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kirkpatrick T, Cockshott ID, Douglas EJ, Nimmo WS. Pharmacokinetics of propofol (diprivan) in elderly patients. Br J Anaesth. 1988;60:146–50.

    Article  CAS  PubMed  Google Scholar 

  26. Cortinez LI, De la Fuente N, Eleveld DJ, Oliveros A, Crovari F, Sepulveda P, Ibacache M, Solari S. Performance of propofol target-controlled infusion models in the obese: pharmacokinetic and pharmacodynamic analysis. Anesth Analg. 2014;119:302–10.

    Article  CAS  PubMed  Google Scholar 

  27. Lemmens HJ, Bernstein DP, Brodsky JB. Estimating blood volume in obese and morbidly obese patients. Obes Surg. 2006;16:773–6.

    Article  PubMed  Google Scholar 

  28. Vricella LK, Louis JM, Chien E, Mercer BM. Blood volume determination in obese and normal-weight gravidas: the hydroxyethyl starch method. Am J Obstet Gynecol. 2015;213:408.e1–6.

    Article  PubMed  Google Scholar 

  29. Hiratsuka M, Takekuma Y, Endo N, Narahara K, Hamdy SI, Kishikawa Y, Matsuura M, Agatsuma Y, Inoue T, Mizugaki M. Allele and genotype frequencies of CYP2B6 and CYP3A5 in the Japanese population. Eur J Clin Pharmacol. 2002;58:417–21.

    Article  CAS  PubMed  Google Scholar 

  30. Maeda H, Hazama S, Shavkat A, Okamoto K, Oba K, Sakamoto J, Takahashi K, Oka M, Nakamura D, Tsunedomi R, Okayama N, Mishima H, Kobayashi M. Differences in UGT1A1, UGT1A7, and UGT1A9 polymorphisms between Uzbek and Japanese populations. Mol Diagn Ther. 2014;18:333–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yan W, Wang YW, Yang FF, Wang M, Zhang XQ, Dong J, Chen E, Yang J. Differences in frequencies of UGT1A9, 1A7, and 1A1 genetic polymorphisms in Chinese Tibetan versus Han Chinese populations. Genet Mol Res. 2013;12:6454–61.

    Article  CAS  PubMed  Google Scholar 

  32. Eleveld DJ, Proost JH, Cortínez LI, Absalom AR, Struys MM. A general purpose pharmacokinetic model for propofol. Anesth Analg. 2014;118:1221–37.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The accomplishment of this dissertation is the joint efforts of all colleagues in Tohoku University School of Medicine and Tohoku Medical Megabank Organization. First, we would like to acknowledge the expert assistance of Ms. Masae Kimura, Department of Integrative Genomics, Tohoku Medical Megabank Organization, who helped with the genomic analyses. Second, workmates in the Department of Anesthesiology and Perioperative Medicine, Tohoku University School of Medicine have great help in conducting this study based on our protocol.

Funding

This study was funded by the Department of Anesthesiology and Perioperative Medicine Tohoku University School of Medicine, Sendai Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Kanaya.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanaya, A., Sato, T., Fuse, N. et al. Impact of clinical factors and UGT1A9 and CYP2B6 genotype on inter-individual differences in propofol pharmacokinetics. J Anesth 32, 236–243 (2018). https://doi.org/10.1007/s00540-018-2470-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-018-2470-3

Keywords

Navigation