Skip to main content

Advertisement

Log in

Serotonin disrupts esophageal mucosal integrity: an investigation using a stratified squamous epithelial model

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Serotonin regulates gastrointestinal function, and mast cells are a potential nonneuronal source of serotonin in the esophagus. Tight junction (TJ) proteins in the esophageal epithelium contribute to the barrier function, and the serotonin signaling pathway may contribute to epithelial leakage in gastroesophageal reflux disease. Therefore, the aim of this study was to investigate the role of serotonin on barrier function, TJ proteins, and related signaling pathways.

Methods

Normal primary human esophageal epithelial cells were cultured with use of an air–liquid interface system. Serotonin was added to the basolateral compartment, and transepithelial electrical resistance (TEER) was measured. The expression of TJ proteins and serotonin receptor 7 (5-HT7) was assessed by Western blotting. The involvement of 5-HT7 was assessed with use of an antagonist and an agonist. The underlying cellular signaling pathways were examined with use of specific blockers.

Results

Serotonin decreased TEER and reduced the expression of TJ proteins ZO-1, occludin, and claudin 1, but not claudin 4. A 5-HT7 antagonist blocked the serotonin-induced decrease in TEER, and a 5-HT7 agonist decreased TEER. Inhibition of p38 mitogen-activated protein kinase (MAPK) reduced the serotonin-induced decrease in TEER. Inhibition of p38 MAPK blocked the decrease of ZO-1 levels, whereas extracellular-signal-regulated kinase (ERK) inhibition blocked the decrease in occludin levels. Cell signaling pathway inhibitors had no effect on serotonin-induced alterations in claudin 1 and claudin 4 levels. Serotonin induced phosphorylation of p38 MAPK and ERK, and a 5-HT7 antagonist partially blocked serotonin-induced phosphorylation of p38 MAPK but not that of ERK.

Conclusions

Serotonin disrupted esophageal squamous epithelial barrier function by modulating the levels of TJ proteins. Serotonin signaling pathways may mediate the pathogenesis of gastroesophageal reflux disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gershon MD. Review article: serotonin receptors and transporters—roles in normal and abnormal gastrointestinal motility. Aliment Pharmacol Ther. 2004;20(Suppl 7):3–14.

    Article  CAS  PubMed  Google Scholar 

  2. Bertrand PP, Bertrand RL. Serotonin release and uptake in the gastrointestinal tract. Auton Neurosci. 2010;153:47–57.

    Article  CAS  PubMed  Google Scholar 

  3. Hornung JP. The human raphe nuclei and the serotonergic system. J Chem Neuroanat. 2003;26:331–43.

    Article  CAS  PubMed  Google Scholar 

  4. Watanabe H, Rose MT, Aso H. Role of peripheral serotonin in glucose and lipid metabolism. Curr Opin Lipidol. 2011;22:186–91.

    Article  CAS  PubMed  Google Scholar 

  5. Tozzi A, Staiano A, Paparo F, et al. Characterization of the inflammatory infiltrate in peptic oesophagitis. Dig Liver Dis. 2001;33:452–8.

    Article  CAS  PubMed  Google Scholar 

  6. Moons LM, Kusters JG, Bultman E, et al. Barrett’s oesophagus is characterized by a predominantly humoral inflammatory response. J Pathol. 2005;207:269–76.

    Article  CAS  PubMed  Google Scholar 

  7. Heidmann DE, Metcalf MA, Kohen R, et al. Four 5-hydroxytryptamine7 (5-HT7) receptor isoforms in human and rat produced by alternative splicing: species differences due to altered intron-exon organization. J Neurochem. 1997;68:1372–81.

    Article  CAS  PubMed  Google Scholar 

  8. Li HF, Liu JF, Zhang K, et al. Expression of serotonin receptors in human lower esophageal sphincter. Exp Ther Med. 2015;9:49–54.

    CAS  PubMed  Google Scholar 

  9. Forster C. Tight junctions and the modulation of barrier function in disease. Histochem Cell Biol. 2008;130:55–70.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kushnir-Sukhov NM, Brown JM, Wu Y, et al. Human mast cells are capable of serotonin synthesis and release. J Allergy Clin Immunol. 2007;119:498–9.

    Article  CAS  PubMed  Google Scholar 

  11. Kushnir-Sukhov NM, Gilfillan AM, Coleman JW, et al. 5-Hydroxytryptamine induces mast cell adhesion and migration. J Immunol. 2006;177:6422–32.

    Article  CAS  PubMed  Google Scholar 

  12. Yang L, Cai H, Tou J, et al. The role of the 5-hydroxytryptamine pathway in reflux-induced esophageal mucosal injury in rats. World J Surg Oncol. 2012;10:219.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kimura Y, Shiozaki H, Hirao M, et al. Expression of occludin, tight-junction-associated protein, in human digestive tract. Am J Pathol. 1997;151:45–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rendon-Huerta E, Valenzano MC, Mullin JM, et al. Comparison of three integral tight junction barrier proteins in Barrett’s epithelium versus normal esophageal epithelium. Am J Gastroenterol. 2003;98:1901–3.

    Article  PubMed  Google Scholar 

  15. Richter JE. Role of the gastric refluxate in gastroesophageal reflux disease: acid, weak acid and bile. Am J Med Sci. 2009;338:89–95.

    Article  PubMed  Google Scholar 

  16. Chen X, Oshima T, Tomita T, et al. Acidic bile salts modulate the squamous epithelial barrier function by modulating tight junction proteins. Am J Physiol Gastrointest Liver Physiol. 2011;301:G203–9.

    Article  CAS  PubMed  Google Scholar 

  17. Oshima T, Gedda K, Koseki J, et al. Establishment of esophageal-like non-keratinized stratified epithelium using normal human bronchial epithelial cells. Am J Physiol Cell Physiol. 2011;300:C1422–9.

    Article  CAS  PubMed  Google Scholar 

  18. Shan J, Oshima T, Muto T, et al. Epithelial-derived nuclear IL-33 aggravates inflammation in the pathogenesis of reflux esophagitis. J Gastroenterol. 2015;50:414–23.

    Article  CAS  PubMed  Google Scholar 

  19. Chen X, Oshima T, Shan J, et al. Bile salts disrupt human esophageal squamous epithelial barrier function by modulating tight junction proteins. Am J Physiol Gastrointest Liver Physiol. 2012;303:G199–208.

    Article  CAS  PubMed  Google Scholar 

  20. Oshima T, Koseki J, Chen X, et al. Acid modulates the squamous epithelial barrier function by modulating the localization of claudins in the superficial layers. Lab Investig. 2012;92:22–31.

    Article  CAS  PubMed  Google Scholar 

  21. Oshima T, Sasaki M, Kataoka H, et al. Wip1 protects hydrogen peroxide-induced colonic epithelial barrier dysfunction. Cell Mol Life Sci. 2007;64:3139–47.

    Article  CAS  PubMed  Google Scholar 

  22. Bueno L, Fioramonti J. Protease-activated receptor 2 and gut permeability: a review. Neurogastroenterol Motil. 2008;20:580–7.

    Article  CAS  PubMed  Google Scholar 

  23. Raymond JR, Mukhin YV, Gelasco A, et al. Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmacol Ther. 2001;92:179–212.

    Article  CAS  PubMed  Google Scholar 

  24. Kim DY, Camilleri M. Serotonin: a mediator of the brain-gut connection. Am J Gastroenterol. 2000;95:2698–709.

    CAS  PubMed  Google Scholar 

  25. Pehlivanov N, Sarosiek I, Whitman R, et al. Effect of cisapride on nocturnal transient lower oesophageal sphincter relaxations and nocturnal gastro-oesophageal reflux in patients with oesophagitis: a double-blind, placebo-controlled study. Aliment Pharmacol Ther. 2002;16:743–7.

    Article  CAS  PubMed  Google Scholar 

  26. Willis S, Allescher HD, Stoschus B, et al. Double blind placebo controlled study on the effect of the nitric oxide donor molsidomin and the 5-HT3 antagonist ondansetron on human esophageal motility. Z Gastroenterol. 1994;32:632–6.

    CAS  PubMed  Google Scholar 

  27. Koutsoumbi P, Epanomeritakis E, Tsiaoussis J, et al. The effect of erythromycin on human esophageal motility is mediated by serotonin receptors. Am J Gastroenterol. 2000;95:3388–92.

    Article  CAS  PubMed  Google Scholar 

  28. Grossi L, Ciccaglione AF, Marzio L. Effect of the 5-HT1 agonist sumatriptan on oesophageal motor pattern in patients with ineffective oesophageal motility. Neurogastroenterol Motil. 2003;15:9–14.

    Article  CAS  PubMed  Google Scholar 

  29. Barnette MS, Grous M, Manning CD, et al. 5-Hydroxytryptamine (5-HT) and SK&F 103829 contract canine lower esophageal sphincter smooth muscle by stimulating 5-HT2 receptors. Receptor. 1992;2:155–67.

    CAS  PubMed  Google Scholar 

  30. Szczesniak MM, Fuentealba SE, Zhang T, et al. Modulation of esophageal afferent pathways by 5-HT3 receptor inhibition. Neurogastroenterol Motil. 2013;25:383–e293.

    Article  CAS  PubMed  Google Scholar 

  31. Liu H, Irving HR, Coupar IM. Expression patterns of 5-HT7 receptor isoforms in the rat digestive tract. Life Sci. 2001;69:2467–75.

    Article  CAS  PubMed  Google Scholar 

  32. Iceta R, Mesonero JE, Aramayona JJ, et al. Expression of 5-HT1A and 5-HT7 receptors in Caco-2 cells and their role in the regulation of serotonin transporter activity. J Physiol Pharmacol. 2009;60:157–64.

    CAS  PubMed  Google Scholar 

  33. Guseva D, Holst K, Kaune B, et al. Serotonin 5-HT7 receptor is critically involved in acute and chronic inflammation of the gastrointestinal tract. Inflamm Bowel Dis. 2014;20:1516–29.

    Article  PubMed  Google Scholar 

  34. Zou BC, Dong L, Wang Y, et al. Expression and role of 5-HT7 receptor in brain and intestine in rats with irritable bowel syndrome. Chin Med J (Engl). 2007;120:2069–74.

    CAS  Google Scholar 

  35. Prins NH, Briejer MR, Van Bergen PJ, et al. Evidence for 5-HT7 receptors mediating relaxation of human colonic circular smooth muscle. Br J Pharmacol. 1999;128:849–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stull MA, Pai V, Vomachka AJ, et al. Mammary gland homeostasis employs serotonergic regulation of epithelial tight junctions. Proc Natl Acad Sci U S A. 2007;104:16708–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pai VP, Horseman ND. Biphasic regulation of mammary epithelial resistance by serotonin through activation of multiple pathways. J Biol Chem. 2008;283:30901–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Witte AB, D’Amato M, Poulsen SS, et al. Duodenal epithelial transport in functional dyspepsia: role of serotonin. World J Gastrointest Pathophysiol. 2013;4:28–36.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Piche T, Barbara G, Aubert P, et al. Impaired intestinal barrier integrity in the colon of patients with irritable bowel syndrome: involvement of soluble mediators. Gut. 2009;58:196–201.

    Article  CAS  PubMed  Google Scholar 

  40. Martinez C, Lobo B, Pigrau M, et al. Diarrhoea-predominant irritable bowel syndrome: an organic disorder with structural abnormalities in the jejunal epithelial barrier. Gut. 2013;62:1160–8.

    Article  CAS  PubMed  Google Scholar 

  41. Coeffier M, Gloro R, Boukhettala N, et al. Increased proteasome-mediated degradation of occludin in irritable bowel syndrome. Am J Gastroenterol. 2010;105:1181–8.

    Article  CAS  PubMed  Google Scholar 

  42. Bertiaux-Vandaele N, Youmba SB, Belmonte L, et al. The expression and the cellular distribution of the tight junction proteins are altered in irritable bowel syndrome patients with differences according to the disease subtype. Am J Gastroenterol. 2011;106:2165–73.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang L, Liu G, Han X, et al. Inhibition of p38 MAPK activation attenuates esophageal mucosal damage in a chronic model of reflux esophagitis. Neurogastroenterol Motil. 2015;27:1648–56.

    Article  CAS  PubMed  Google Scholar 

  44. Costantini TW, Peterson CY, Kroll L, et al. Role of p38 MAPK in burn-induced intestinal barrier breakdown. J Surg Res. 2009;156:64–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu HL, Gao X, Jiang ZD, et al. Attenuated expression of the tight junction proteins is involved in clopidogrel-induced gastric injury through p38 MAPK activation. Toxicology. 2013;304:41–8.

    Article  CAS  PubMed  Google Scholar 

  46. Ju Y, Wang T, Li Y, et al. Coxsackievirus B3 affects endothelial tight junctions: possible relationship to ZO-1 and F-actin, as well as p38 MAPK activity. Cell Biol Int. 2007;31:1207–13.

    Article  CAS  PubMed  Google Scholar 

  47. Kevil CG, Oshima T, Alexander B, et al. H2O2-mediated permeability: role of MAPK and occludin. Am J Physiol Cell Physiol. 2000;279:C21–30.

    CAS  PubMed  Google Scholar 

  48. Samak G, Aggarwal S, Rao RK. ERK is involved in EGF-mediated protection of tight junctions, but not adherens junctions, in acetaldehyde-treated Caco-2 cell monolayers. Am J Physiol Gastrointest Liver Physiol. 2011;301:G50–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta. 2010;1802:396–405.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mayumi Yamada and Chiyomi Ito for excellent technical assistance. This study was supported by a Grant-in Aid for Scientific Research (C) from the Japan Society for the Promotion of Science (25460939 to Tadayuki Oshima).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadayuki Oshima.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 631 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Oshima, T., Tomita, T. et al. Serotonin disrupts esophageal mucosal integrity: an investigation using a stratified squamous epithelial model. J Gastroenterol 51, 1040–1049 (2016). https://doi.org/10.1007/s00535-016-1195-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-016-1195-z

Keywords

Navigation