Skip to main content
Log in

Multi-bump solutions for logarithmic Schrödinger equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study spatially periodic logarithmic Schrödinger equations:

$$\begin{aligned} \left\{ \begin{aligned}&-\Delta u + V(x)u=Q(x)u\log u^2, \quad u>0\quad \text {in}\ \mathbb {R}^N, \\&u\in H^1(\mathbb {R}^N), \end{aligned}\right. \end{aligned}$$
(LS)

where \(N\ge 1\) and V(x), Q(x) are spatially 1-periodic functions of class \(C^1\). We take an approach using spatially 2L-periodic problems (\(L\gg 1\)) and we show the existence of infinitely many multi-bump solutions of (LS) which are distinct under \(\mathbb {Z}^N\)-action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alama, S., Li, Y.Y.: On multibump bound states for certain semilinear elliptic equations. Indiana Univ. Math. J. 41(4), 983–1026 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Białynicki-Birula, I., Mycielski, J.: Wave equations with logarithmic nonlinearities. Bull. Acad. Pol. Sci. Cl 3(23), 461–466 (1975)

    MathSciNet  Google Scholar 

  3. Białynicki-Birula, I., Mycielski, J.: Nonlinear wave mechanics. Ann. Phys. 100(1–2), 62–93 (1976)

    Article  MathSciNet  Google Scholar 

  4. Cazenave, T.: Stable solutions of the logarithmic Schrödinger equation. Nonlinear Anal. 7(10), 1127–1140 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, S.: Multi-bump solutions for a strongly indefinite semilinear Schrödinger equation without symmetry or convexity assumptions. Nonlinear Anal. 68(10), 3067–3102 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Coti Zelati, V., Rabinowitz, P.H.: Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J. Am. Math. Soc. 4(4), 693–727 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coti Zelati, V., Rabinowitz, P.H.: Homoclinic type solutions for a semilinear elliptic PDE on \(\mathbb{R}^n\). Commun. Pure Appl. Math. 45(10), 1217–1269 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coti Zelati, V., Rabinowitz, P.H.: Multibump periodic solutions of a family of Hamiltonian systems. Topol. Methods Nonlinear Anal. 4, 31–57 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. d’Avenia, P., Montefusco, E., Squassina, M.: On the logarithmic Schrödinger equation. Commun. Contemp. Math. 16(02), 1350032 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. d’Avenia, P., Squassina, M., Zenari, M.: Fractional logarithmic Schrödinger equations. Math. Methods Appl. Sci. 38, 5207–5216 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guerrero, P., López, J.L., Nieto, J.: Global \(H^1\) solvability of the 3D logarithmic Schrödinger equation. Nonlinear Anal. Real World Appl. 11(1), 79–87 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ji, C., Szulkin, A.: A logarithmic Schrödinger equation with asymptotic conditions on the potential. J. Math. Anal. Appl. 437(1), 241–254 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jeanjean, L., Tanaka, K.: Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities. Calc. Var. Partial. Differ. Equ. 21(3), 287–318 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, Z., Wang, Z.-Q.: Multi-bump type nodal solutions having a prescribed number of nodal domains: I. Ann. Inst. Henri Poincaré Anal. Non Linéaire 22(5), 597–608 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, Z., Wang, Z.-Q.: Multi-bump type nodal solutions having a prescribed number of nodal domains. II. Ann. Inst. Henri Poincaré Anal. Non Linéaire 22(5), 609–631 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Montecchiari, P.: Existence and multiplicity of homoclinic orbits for a class of asymptotically periodic second order Hamiltonian systems. Ann. Mat. 168(1), 317–354 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. In: CBMS Regional Conference Series in Mathematics, 65 (1986)

  18. Rabinowitz, P.H.: Homoclinic orbits for a class of Hamiltonian systems. Proc. R. Soc. Edinb. Sect. A 114(1–2), 33–38 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Séré, É.: Existence of infinitely many homoclinic orbits in Hamiltonian systems. Math. Z. 209(1), 27–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Séré, É.: Looking for the Bernoulli shift. Ann. Inst. Henri Poincaré Anal. Non Lineáire 10(5), 561–590 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. 7(3), 447–526 (1982)

    Article  MATH  Google Scholar 

  22. Squassina, M., Szulkin, A.: Multiple solutions to logarithmic Schrödinger equations with periodic potential. Calc. Var. Partial Differ. Equ. 54(1), 585–597 (2014)

    Article  MATH  Google Scholar 

  23. Tanaka, K.: Homoclinic orbits in a first order superquadratic Hamiltonian system: convergence of subharmonic orbits. J. Diff. Eq. 94, 315–339 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Troy, W.C.: Uniqueness of positive ground state solutions of the logarithmic Schrödinger equation. Arch. Ration. Mech. Anal. 222(3), 1581–1600 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zloshchastiev, K.G.: Logarithmic nonlinearity in theories of quantum gravity: origin of time and observational consequences. Gravit. Cosmol. 16(4), 288–297 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are greatful to Professor Zhi-Qiang Wang for suggesting us to study this problem and also for valuable comments. The Authors are also grateful to to Professor Norihisa Ikoma for valuable comments. This paper was written during Chengxiang Zhang’s visit to Department of Mathematics, School of Science and Engineering, Waseda University as a research fellow with support from China Scholarship Council. Chengxiang Zhang would like to thank China Scholarship Council for the support and Waseda University for kind hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunaga Tanaka.

Additional information

Communicated by P. Rabinowitz.

Kazunaga Tanaka is partially supported by JSPS Grants-in-Aid for Scientific Research (B) (25287025) and Waseda University Grant for Special Research Projects 2016B-120.

Chengxiang Zhang is supported by China Scholarship Council and NSFC-11271201.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, K., Zhang, C. Multi-bump solutions for logarithmic Schrödinger equations. Calc. Var. 56, 33 (2017). https://doi.org/10.1007/s00526-017-1122-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1122-z

Mathematics Subject Classification

Navigation