Skip to main content
Log in

A two-warehouse inventory model for non-instantaneous deteriorating items with interval-valued inventory costs and stock-dependent demand under inflationary conditions

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This research work develops a two-warehouse inventory model for non-instantaneous deteriorating items with interval-valued inventory costs and stock-dependent demand under inflationary conditions. The proposed inventory model permits shortages, and the backlogging rate is variable and dependent on the waiting time for the next order, and inventory parameters are interval-valued. The main aim of this research is to obtain the retailer’s optimal replenishment policy that minimizes the present worth of total cost per unit time. The optimization problems of the inventory model have been formulated and solved using two variants of particle swarm optimization (PSO) and interval order relations. The efficiency and effectiveness of the inventory model are validated with numerical examples and a sensitivity analysis. The proposed inventory model can assist a decision maker in making important replenishment decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ghare PM, Schrader GF (1963) A model for exponentially decaying inventory. J Ind Eng 14(5):238–243

    Google Scholar 

  2. Covert RP, Philip GC (1973) An EOQ model for items with Weibull distribution deterioration. AIIE Trans 5(4):323–326

    Article  Google Scholar 

  3. Nahmias S (1982) Perishable inventory theory: a review. Oper Res 30(4):680–708

    Article  MathSciNet  MATH  Google Scholar 

  4. Raafat F (1991) Survey of literature on continuously deteriorating inventory models. J Oper Res Soc 42(1):27–37

    Article  MATH  Google Scholar 

  5. Goyal SK, Giri BC (2001) Recent trends in modeling of deteriorating inventory. Eur J Oper Res 134(1):1–16

    Article  MathSciNet  MATH  Google Scholar 

  6. Bakker M, Riezebos J, Teunter RH (2012) Review of inventory systems with deterioration since 2001. Eur J Oper Res 221(2):275–284

    Article  MathSciNet  MATH  Google Scholar 

  7. Janssen L, Claus T, Sauer J (2016) Literature review of deteriorating inventory models by key topics from 2012 to 2015. Int J Prod Econ 182:86–112

    Article  Google Scholar 

  8. Wu KS, Ouyang LY, Yang CT (2006) An optimal replenishment policy for non-instantaneous deteriorating items with stock-dependent demand and partial backlogging. Int J Prod Econ 101(2):369–384

    Article  Google Scholar 

  9. Ouyang LY, Wu KS, Yang CT (2006) A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments. Comput Ind Eng 51(4):637–651

    Article  Google Scholar 

  10. Ouyang LY, Wu KS, Yang CT (2008) Retailer’s ordering policy for non-instantaneous deteriorating items with quantity discount, stock dependent demand and stochastic backorder rate. J Chin Inst Ind Eng 25(1):62–72

    Google Scholar 

  11. Wu KS, Ouyang LY, Yang CT (2009) Coordinating replenishment and pricing policies for non-instantaneous deteriorating items with price-sensitive demand. Int J Syst Sci 40(12):1273–1281

    Article  MathSciNet  MATH  Google Scholar 

  12. Jaggi CK, Verma P (2010) An optimal replenishment policy for non-instantaneous deteriorating items with two storage facilities. Int J Serv Oper Inf 5(3):209–230

    Google Scholar 

  13. Chang CT, Teng JT, Goyal SK (2010) Optimal replenishment policies for non-instantaneous deteriorating items with stock-dependent demand. Int J Prod Econ 123(1):62–68

    Article  Google Scholar 

  14. Geetha KV, Uthayakumar R (2010) Economic design of an inventory policy for non-instantaneous deteriorating items under permissible delay in payments. J Comput Appl Math 233(10):2492–2505

    Article  MathSciNet  MATH  Google Scholar 

  15. Soni HN, Patel KA (2012) Optimal pricing and inventory policies for non-instantaneous deteriorating items with permissible delay in payment: fuzzy expected value model. Int J Ind Eng Comput 3(3):281–300

    Google Scholar 

  16. Maihami R, Kamalabadi IN (2012) Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demands. Int J Prod Econ 136(1):116–122

    Article  Google Scholar 

  17. Maihami R, Kamalabadi IN (2012) Joint control of inventory and its pricing for non-instantaneously deteriorating items under permissible delay in payments and partial backlogging. Math Comput Model 55(5–6):1722–1733

    Article  MathSciNet  MATH  Google Scholar 

  18. Shah NH, Soni HN, Patel KA (2013) Optimizing inventory and marketing policy for non-instantaneous deteriorating items with generalized type deterioration and holding cost rates. Omega 41(2):421–430

    Article  Google Scholar 

  19. Dye CY (2013) The effect of preservation technology investment on a non-instantaneous deteriorating inventory model. Omega 41(5):872–880

    Article  Google Scholar 

  20. Jaggi CK, Tiwari S (2014) Two warehouse inventory model for non-instantaneous deteriorating items with price dependent demand and time varying holding cost. In: Parakash O (ed) Mathematical modelling and applications. LAMBERT Academic Publisher, Saarbrücken, pp 225–238

    Google Scholar 

  21. Jaggi CK, Sharma A, Tiwari S (2015) Credit financing in economic ordering policies for non-instantaneous deteriorating items with price dependent demand under permissible delay in payments: a new approach. Int J Ind Eng Comput 6(4):481–502

    Google Scholar 

  22. Jaggi CK, Cárdenas-Barrón LE, Tiwari S, Shafi A (2017) Two-warehouse inventory model with imperfect quality items under deteriorating conditions and permissible delay in payments. Sci Iran Trans E Ind Eng 24(1):390–412

    Google Scholar 

  23. Jaggi CK, Tiwari S, Goel SK (2017) Credit financing in economic ordering policies for non-instantaneous deteriorating items with price dependent demand and two storage facilities. Ann Oper Res 248(1–2):253–280

    Article  MathSciNet  MATH  Google Scholar 

  24. Hartley VR (1976) Operations research—a managerial emphasis. Good Year, Santa Monica, pp 315–317

    Google Scholar 

  25. Sarma KVS (1987) A deterministic order level inventory model for deteriorating items with two storage facilities. Eur J Oper Res 29(1):70–73

    Article  MathSciNet  MATH  Google Scholar 

  26. Yang HL (2004) Two-warehouse inventory models for deteriorating items with shortages under inflation. Eur J Oper Res 157(2):344–356

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang HL (2006) Two-warehouse partial backlogging inventory models for deteriorating items under inflation. Int J Prod Econ 103(1):362–370

    Article  Google Scholar 

  28. Wee HM, Yu JC, Law ST (2005) Two-warehouse inventory model with partial backordering and Weibull distribution deterioration under inflation. J Chin Inst Ind Eng 22(6):451–462

    Google Scholar 

  29. Pal P, Das CB, Panda A, Bhunia AK (2005) An application of real-coded genetic algorithm (for mixed integer non-linear programming in an optimal two-warehouse inventory policy for deteriorating items with a linear trend in demand and a fixed planning horizon). Int J Comput Math 82(2):163–175

    Article  MathSciNet  MATH  Google Scholar 

  30. Lee CC (2006) Two-warehouse inventory model with deterioration under FIFO dispatching policy. Eur J Oper Res 174(2):861–873

    Article  MathSciNet  MATH  Google Scholar 

  31. Chung KJ, Huang TS (2007) The optimal retailer’s ordering policies for deteriorating items with limited storage capacity under trade credit financing. Int J Prod Econ 106(1):127–145

    Article  Google Scholar 

  32. Hsieh TP, Dye CY, Ouyang LY (2008) Determining optimal lot size for a two-warehouse system with deterioration and shortages using net present value. Eur J Oper Res 191(1):182–192

    Article  MathSciNet  MATH  Google Scholar 

  33. Liao JJ, Huang KN (2010) Deterministic inventory model for deteriorating items with trade credit financing and capacity constraints. Comput Ind Eng 59(4):611–618

    Article  Google Scholar 

  34. Das B, Maity K, Maiti M (2007) A two warehouse supply-chain model under possibility/necessity/credibility measures. Math Comput Model 46(3–4):398–409

    Article  MATH  Google Scholar 

  35. Niu B, Xie J (2008) A note on “Two-warehouse inventory model with deterioration under FIFO dispatch policy”. Eur J Oper Res 190(2):571–577

    Article  MATH  Google Scholar 

  36. Rong M, Mahapatra NK, Maiti M (2008) A two warehouse inventory model for a deteriorating item with partially/fully backlogged shortage and fuzzy lead time. Eur J Oper Res 189(1):59–75

    Article  MathSciNet  MATH  Google Scholar 

  37. Dey JK, Mondal SK, Maiti M (2008) Two storage inventory problem with dynamic demand and interval valued lead-time over finite time horizon under inflation and time-value of money. Eur J Oper Res 185(1):170–194

    Article  MathSciNet  MATH  Google Scholar 

  38. Maiti MK (2008) Fuzzy inventory model with two warehouses under possibility measure on fuzzy goal. Eur J Oper Res 188(3):746–774

    Article  MathSciNet  MATH  Google Scholar 

  39. Lee CC, Hsu SL (2009) A two-warehouse production model for deteriorating inventory items with time-dependent demands. Eur J Oper Res 194(3):700–710

    Article  MathSciNet  MATH  Google Scholar 

  40. Bhunia AK, Shaikh AA (2011) A two warehouse inventory model for deteriorating items with time dependent partial backlogging and variable demand dependent on marketing strategy and time. Int J Inventory Control Manag 1(2):95–110

    Google Scholar 

  41. Liang Y, Zhou F (2011) A two-warehouse inventory model for deteriorating items under conditionally permissible delay in payment. Appl Math Model 35(5):2221–2231

    Article  MathSciNet  MATH  Google Scholar 

  42. Bhunia AK, Shaikh AA, Maiti AK, Maiti M (2013) A two warehouse deterministic inventory model for deteriorating items with a linear trend in time dependent demand over finite time horizon by elitist real-coded genetic algorithm. Int J Ind Eng Comput 4(2):241–258

    Google Scholar 

  43. Yang HL, Chang CT (2013) A two-warehouse partial backlogging inventory model for deteriorating items with permissible delay in payment under inflation. Appl Math Model 37(5):2717–2726

    Article  MathSciNet  MATH  Google Scholar 

  44. Jaggi CK, Pareek S, Khanna A, Sharma R (2014) Credit financing in a two-warehouse environment for deteriorating items with price-sensitive demand and fully backlogged shortages. Appl Math Model 38(21–22):5315–5333

    Article  MathSciNet  MATH  Google Scholar 

  45. Bhunia AK, Shaikh AA, Sharma G, Pareek S (2015) A two storage inventory model for deteriorating items with variable demand and partial backlogging. J Ind Prod Eng 32(4):263–272

    Google Scholar 

  46. Bhunia AK, Shaikh AA, Sahoo S (2016) A two-warehouse inventory model for deteriorating item under permissible delay in payment via particle swarm optimization. Int J Logist Syst Manag 24(1):45–69

    Article  Google Scholar 

  47. Jaggi CK, Tiwari S, Shafi A (2015) Effect of deterioration on two-warehouse inventory model with imperfect quality. Comput Ind Eng 88:378–385

    Article  Google Scholar 

  48. Tiwari S, Cárdenas-Barrón LE, Khanna A, Jaggi CK (2016) Impact of trade credit and inflation on retailer’s ordering policies for non-instantaneous deteriorating items in a two-warehouse environment. Int J Prod Econ 176:154–169

    Article  Google Scholar 

  49. Taleizadeh AA, Niaki STA, Aryanezhad MB (2009) A hybrid method of Pareto, TOPSIS and genetic algorithm to optimize multi-product multi-constraint inventory control systems with random fuzzy replenishments. Math Comput Model 49(5–6):1044–1057

    Article  MathSciNet  MATH  Google Scholar 

  50. Taleizadeh AA, Niaki STA, Meibodi RG (2013) Replenish-up-to multi-chance-constraint inventory control system under fuzzy random lost-sale and backordered quantities. Knowl Based Syst 53:147–156

    Article  Google Scholar 

  51. Taleizadeh AA, Barzinpour F, Wee HM (2011) Meta-heuristic algorithms for solving a fuzzy single-period problem. Math Comput Model 54(5–6):1273–1285

    Article  MathSciNet  MATH  Google Scholar 

  52. Tat R, Taleizadeh AA, Esmaeili M (2015) Developing economic order quantity model for non-instantaneous deteriorating items in vendor-managed inventory (VMI) system. Int J Syst Sci 46(7):1257–1268

    Article  MATH  Google Scholar 

  53. Hansen E, Walster GW (2003) Global optimization using interval analysis. Marcel Dekker, New York

    MATH  Google Scholar 

  54. Sahoo L, Bhunia AK, Kapur PK (2012) Genetic algorithm based multi-objective reliability optimization in interval environment. Comput Ind Eng 62(1):152–160

    Article  Google Scholar 

  55. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, pp 39–43

  56. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceeding of the IEEE international conference on neural networks, vol IV, pp 1942–1948

  57. Clerc M (1999) The swarm and queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of IEEE congress on evolutionary computation, pp 1951–1957

  58. Clerc M, Kennedy J (2002) The particle swarm: explosion, stability, and convergence in a multi-dimensional complex space. IEEE Trans Evol Comput 6(1):58–73

    Article  Google Scholar 

  59. Xi M, Sun J, Xu W (2008) An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position. Appl Math Comput 205(2):751–759

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the anonymous reviewers for their comments and suggestions which have helped to improve the quality of the paper. The work was done when the third author was doing his Ph.D. from University of Delhi. The second author was supported by the Tecnológico de Monterrey Research Group in Industrial Engineering and Numerical Methods 0822B01006. The third author is grateful to his parents, wife, children Aditi Tiwari and Aditya Tiwari for their valuable support during the development of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leopoldo Eduardo Cárdenas-Barrón.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Appendices

Appendix 1

This appendix presents a brief overview of interval arithmetic.

The brief summary of interval mathematics is from Hansen and Walster [53]. The definitions of interval arithmetic, interval functions, interval order relations and central tendencies of interval numbers that are indispensable in the formulation of the two-warehouse inventory model are given below.

An interval number A is defined as \(A = \left[ {a_{L} ,a_{R} } \right] = \, \left\{ {x:a_{L} \le x \le a_{R} ,x \in {\mathbb{R}}} \right\}\) of width \(\left( {a_{R} - a_{L} } \right)\). Here, \({\mathbb{R}}\) is the set of real numbers.

Every real number \(x \in {\mathbb{R}}\) is expressed as a degenerate interval number [x, x] with zero width. Interval number is also written in the form of centre and radius of the interval as A\(= \left\langle {a_{C} , \, a_{W} } \right\rangle = \left\{ {x:a_{C} {-}a_{W} \le x \le a_{C} + a_{W} , \, x \in {\mathbb{R}}} \right\},\quad {\text{where}}\;a_{C} = \, \left( {a_{L} + a_{R} } \right)/2 = {\text{center}}\;{\text{of}}\;{\text{the}}\;{\text{interval}}\;{\text{and}}\;a_{W} = \left( {a_{R} {-}a_{L} } \right)/2 = {\text{radius}}\;{\text{of}}\;{\text{the}}\;{\text{interval}}.\)

Definition 1

Let \(A = [a_{L} ,a_{R} ]\) and \(B = [b_{L} ,b_{R} ]\) be two interval numbers. The addition, subtraction, scalar multiplication, multiplication and division of interval numbers are given below:

  1. 1.

    Addition: \(A + B \, = \left[ {a_{L} ,a_{R} } \right] + \left[ {b_{L} ,b_{R} } \right] = \left[ {a_{L} + \, b_{L} ,a_{R} + \, b_{R} } \right].\)

  2. 2.

    Subtraction: \(A \, - \, B = \, \left[ {a_{L} , a_{R} } \right] - \left[ {b_{L} ,b_{R} } \right] = \left[ {a_{L} , a_{R} } \right] + \left[ { - b_{L} , - b_{R} } \right] = \left[ {a_{L} - b_{L} ,a_{R} - b_{R} } \right].\)

  3. 3.

    Scalar multiplication:\(\lambda A = \lambda \left[ {a_{L} , \, a_{R} } \right] = \left\{ {\begin{array}{*{20}l} {\left[ {\lambda a_{L} , \, \lambda a_{R} } \right]} & {\quad {\text{if}}\;\lambda \ge 0} \\ {\left[ {\lambda a_{R} , \, \lambda a_{L} } \right]} & {\quad {\text{if}}\;\lambda < 0,} \\ \end{array} } \right.\quad {\text{for}}\;{\text{any}}\;{\text{real}}\;{\text{number}}\;\lambda .\)

  4. 4.

    Multiplication: \(A \times B = \, \left[ {\min \, \left( {a_{L} b_{L} ,a_{L} b_{R} ,a_{R} b_{L} ,a_{R} b_{R} } \right), \, \max\left( {a_{L} b_{L} ,a_{L} b_{R} ,a_{R} b_{L} ,a_{R} b_{R} } \right)} \right].\)

  5. 5.

    Division: \(\frac{A}{B} = A \times \left( {\frac{1}{B}} \right) = \left[ {a_{L} , \, a_{R} } \right] \times \left[ {\frac{1}{{b_{R} }}, \, \frac{1}{{b_{L} }}} \right]\) provided 0 ∉ [bL, bR].

Interval order relations

Let \(A = [a_{L} ,a_{R} ]\) and \(B = [b_{L} ,b_{R} ]\) be two intervals. Then, these two intervals can be anyone of the following types:

  • Type 1: Two intervals are disjoint.

  • Type 2: Two intervals are partially overlapping.

  • Type 3: One of the intervals contains the other one.

Some researchers gave the definitions of order relations between two interval numbers. In recent times, Sahoo et al. [54] provided the same by modifying the drawbacks of existing definitions. Their definitions are as follows:

Definition 2

The order relation \(>_{\hbox{max} }\) among the intervals \(A = [a_{L} ,a_{R} ] = \left\langle {a_{c} ,a_{w} } \right\rangle\) and \(B = [b_{L} ,b_{R} ] = \left\langle {b_{c} ,b_{w} } \right\rangle\); then, for maximization problems

  1. 1.

    \(A >_{\hbox{max} } B \Leftrightarrow a_{c} > b_{c} \;{\text{for}}\;{\text{Type}}\;{\text{I}}\;{\text{and}}\;{\text{Type}}\;{\text{II}}\;{\text{intervals,}}\)

  2. 2.

    \(A >_{\hbox{max} } B \Leftrightarrow\) either \(a_{c} \ge b_{c} \, \wedge a_{w} < b_{w} \,\) or \(a_{c} \ge b_{c} \, \wedge a_{R} > b_{R} \,{\text{for}}\,{\text{Type III}}\,\,{\text{intervals,}}\)

According to this definition, the interval \(A\) is accepted for maximization case. Obviously, the order relation \(A >_{\hbox{max} } B\) is reflexive and transitive, but not symmetric.

Definition 3

The order relation \(<_{\hbox{min} }\) among the intervals \(A = [a_{L} ,a_{R} ] = \left\langle {a_{c} ,a_{w} } \right\rangle\) and \(B = [b_{L} ,b_{R} ] = \left\langle {b_{c} ,b_{w} } \right\rangle\); then, for minimization problems

  1. 1.

    \(A <_{\hbox{min} } B \Leftrightarrow a_{c} < b_{c} \;{\text{for}}\;{\text{Type}}\;{\text{I}}\;{\text{and}}\;{\text{Type}}\;{\text{II}}\;{\text{intervals,}}\)

  2. 2.

    \(A <_{\hbox{min} } B \Leftrightarrow\) either \(a_{c} \le b_{c} \, \wedge a_{w} < b_{w} \,\) or \(a_{c} \le b_{c} \wedge a_{L} < b_{L} \;{\text{for}}\;{\text{Type}}\;{\text{III}}\;{\text{intervals,}}\)

According to this definition, the interval A is accepted for minimization case. Obviously, the order relation \(A <_{\hbox{min} } B\) is reflexive and transitive, but not symmetric.

Appendix 2

This appendix completes the modelling part of case when \(t_{{\rm d}} \ge t_{{\rm r}}\). In this case, time during which no deterioration happens is greater than the time during which inventory in RW attains zero and the behaviour of the inventory model over the entire cycle \(\left[ {0, \, T} \right]\) is graphically depicted in Fig. 2.

Fig. 2
figure 2

Two-warehouse inventory system when \(t_{{\rm d}} > t_{{\rm r}}\)

The differential equations that model the inventory level in the RW and OW at any time t within the period \(\left( {0, \, T} \right)\) are expressed as:

$$\frac{{{\text{d}}I_{{\rm r}} ( t )}}{{{\text{d}}t}} = - \left( {a \, + \, bI_{{\rm r}} ( t )} \right),\quad 0 \le t \le t_{{\rm r}}$$
(22)
$$\frac{{{\text{d}}I_{0} ( t )}}{{{\text{d}}t}} = - \left( {a \, + \, bI_{0} ( t )} \right),\quad t_{{\rm r}} < t \le t_{{\rm d}}$$
(23)
$$\frac{{{\text{d}}I_{0} ( t )}}{{{\text{d}}t}} + \alpha I_{0} ( t ) = - \left( {a \, + \, bI_{0} ( t )} \right),\quad t_{{\rm d}} < t \le t_{{\rm w}}$$
(24)
$$\frac{{{\text{d}}B( t )}}{{{\text{d}}t}} = ae^{ - \delta (T - t)} ,\quad t_{{\rm w}} < t \le T$$
(25)

The solutions of the above differential equations with boundary conditions \(I_{{\rm r}} \left( {t_{{\rm r}} } \right) = 0,I_{0} \left( {t_{{\rm r}} } \right) = W,I_{0} \left( {t_{W} } \right) = 0,B\left( {t_{W} } \right) = 0\) are

$$I_{{\rm r}} ( t ) = \frac{a}{b}\left( {e^{{b\left( {t_{{\rm r}} - t} \right)}} - 1} \right),\quad 0 \le t \le t_{{\rm r}}$$
(26)
$$I_{0} ( t ) = \left( {W + \frac{a}{b}} \right)e^{{b\left( {t_{{\rm r}} - t} \right)}} - \frac{a}{b},\quad t_{{\rm r}} < t \le t_{{\rm d}}$$
(27)
$$I_{0} ( t ) = \frac{a}{\alpha + b}\left( {e^{{\left( {\alpha + b} \right)\left( {t_{{\rm w}} - t} \right)}} - 1} \right),\quad t_{{\rm d}} < t \le t_{{\rm w}}$$
(28)
$$B( t ) = \frac{a}{\delta }\left\{ {e^{ - \delta (T - t)} - e^{{ - \delta (T - t_{{\rm w}} )}} } \right\},\quad t_{{\rm w}} < t \le T$$
(29)

The quantity of lost sales at time t is

$$L(t) = \int\limits_{{t_{{\rm w}} }}^{t} {a\left\{ {1 - e^{ - \delta (T - t)} } \right\}{\text{d}}t} ;\quad t_{{\rm w}} < t \le T$$
$$\, L(t) = a\left[ {\left( {t - t_{{\rm w}} } \right) - \frac{1}{\delta }\left\{ {e^{ - \delta (T - t)} - e^{{ - \delta (T - t_{{\rm w}} )}} } \right\}} \right]$$
(30)

In view that there exists continuity of \(I_{0} (t)\) at \(t = t_{{\rm d}} ,\), thus

$$\left( {W + \frac{a}{b}} \right)e^{{b\left( {t_{{\rm r}} - t_{{\rm d}} } \right)}} - \frac{a}{b} = \frac{a}{\alpha + b}\left( {e^{{\left( {\alpha + b} \right)\left( {t_{{\rm w}} - t_{{\rm d}} } \right)}} - 1} \right)$$
$$t_{{\rm w}} = t_{{\rm d}} + \frac{1}{\alpha + b}\ln \left| {1 + \frac{\alpha + b}{a}\left\{ {\left( {W + \frac{a}{b}} \right)e^{{b\left( {t_{{\rm r}} - t_{{\rm d}} } \right)}} - \frac{a}{b}} \right\}} \right|$$
(31)

Now, using \(I_{{\rm r}} \left( 0 \right) = \, Z - W\), then the maximum inventory is

$$Z = W + \frac{a}{b}\left( {e^{{bt_{{\rm r}} }} - 1} \right)$$
(32)

By placing \(t \, = \, T\) into Eq. (29), the maximum amount of demand backlogged per cycle is

$$B\left( T \right) = \frac{a}{\delta }\left( {1 - e^{{ - \delta (T - t_{{\rm w}} )}} } \right)$$
(33)

As a result, order quantity is \(Q = Z + B(T)\)

$$Q = W + \frac{a}{b}\left( {e^{{bt_{{\rm r}} }} - 1} \right) + \frac{a}{\delta }\left( {1 - e^{{ - \delta (T - t_{{\rm w}} )}} } \right)$$
(34)

Again, the total cost per cycle consists of the following elements:

  1. 1.

    Present worth of the replenishment cost = A

  2. 2.

    Present worth of the inventory holding cost in RW = \(F\int\limits_{0}^{{t_{{\rm r}} }} {e^{ - rt} I_{{\rm r}} ( t ){\text{d}}t}\)

    $$= \frac{Fa}{b}\left\{ {\frac{1}{{\left( {r + b} \right)}}\left( {e^{{bt_{{\rm r}} }} - e^{{ - rt_{{\rm r}} }} } \right) + \frac{1}{r}\left( {e^{{ - rt_{{\rm r}} }} - 1} \right)} \right\}$$
  3. 3.

    Present worth of the inventory holding cost in OW

    $$\begin{aligned} & = H\left( {\int\limits_{0}^{{t_{{\rm r}} }} {e^{ - rt} W{\text{d}}t} + \int\limits_{{t_{{\rm r}} }}^{{t_{{\rm d}} }} {e^{ - rt} I_{0} ( t ){\text{d}}t + \int\limits_{{t_{{\rm d}} }}^{{t_{{\rm w}} }} {e^{ - rt} I_{0} ( t ){\text{d}}t} } } \right) \\ & = H\left[ {\frac{W}{r}\left( {1 - e^{{ - rt_{{\rm r}} }} } \right) + \frac{{e^{{ - rt_{{\rm r}} }} }}{r + b}\left( {W + \frac{a}{b}} \right)\left( {1 - e^{{\left( {r + b} \right)\left( {t_{{\rm r}} - t_{{\rm d}} } \right)}} } \right) + \frac{{ae^{{ - rt_{{\rm r}} }} }}{br}\left( {e^{{r\left( {t_{{\rm r}} - t_{{\rm d}} } \right)}} - 1} \right)} \right. \\ & \quad \left. {\left. { + \frac{{ae^{{ - rt_{{\rm w}} }} }}{\alpha + b}\left\{ {\frac{1}{\alpha + b + r}\left( {e^{{\left( {\alpha + b + r} \right)\left( {t_{{\rm w}} - t_{{\rm d}} } \right)}} - 1} \right)} \right. + \frac{1}{r}\left( {1 - e^{{r\left( {t_{{\rm w}} - t_{{\rm d}} } \right)}} } \right)} \right\}} \right] \\ \end{aligned}$$
  4. 4.

    Present worth of the backlogging cost = \(s\int\limits_{{t_{W} }}^{T} {B( t )e^{ - rt} {\text{d}}t}\)

    $$= \frac{sa}{\delta }e^{ - \delta T} \left[ {\frac{1}{\delta - r}\left\{ {e^{(\delta - r)T} - e^{{(\delta - r)t_{{\rm w}} }} } \right\} + \frac{{e^{{\delta t_{{\rm w}} }} }}{r}\left\{ {e^{ - rT} - e^{{ - rt_{{\rm w}} }} } \right\}} \right]$$
  5. 5.

    Present worth of opportunity cost due to lost sales \(= c_{1} e^{ - rT} \int\limits_{{t_{{\rm w}} }}^{T} {\left\{ {1 - e^{ - \delta (T - t)} } \right\}D{\text{d}}t}\)

    $$= c_{1} ae^{ - rT} \left[ {T - t_{{\rm w}} - \frac{1}{\delta }\left\{ {1 - e^{{ - \delta (T - t_{{\rm w}} )}} } \right\}} \right]$$
  6. 6.

    Present worth of the cost for deteriorated items \(= c\alpha \int\limits_{{t_{{\rm d}} }}^{{t_{{\rm w}} }} {e^{ - rt} I_{0} (t){\text{d}}t}\)

    $$= c\frac{{ae^{{ - rt_{{\rm w}} }} }}{\alpha + b}\left\{ {\frac{1}{\alpha + b + r}\left( {e^{{\left( {\alpha + b + r} \right)\left( {t_{{\rm w}} - t_{{\rm d}} } \right)}} - 1} \right) + \frac{1}{r}\left( {1 - e^{{r\left( {t_{{\rm w}} - t_{{\rm d}} } \right)}} } \right)} \right\}$$

Appendix 3: Particle swarm optimization (PSO)

This appendix provides a brief overview of PSO. The concept of particle swarm optimization algorithm (PSO) was introduced by Eberhart and Kennedy [55] and Kennedy and Eberhart [56]. This algorithm has been used broadly in obtaining solutions for optimization problems. The basic theory of PSO is based on the food-searching activities of birds. After Eberhart and Kennedy [55] and Kennedy and Eberhart [56], a lot of work has been published in this field by many researchers and they developed different variants of PSO. In this paper, two types of PSO algorithms named as PSO-CO and WQPSO are applied. Clerc [57] and Clerc and Kennedy [58] proposed an improved version of PSO, and this version of PSO is known as PSO-CO, i.e. constriction coefficient-based PSO, while Xi et al. [59] introduced the weighted quantum particle swarm optimization (WQPSO).

Below, it is presented the notation used in the PSO algorithm.

Notation

Description

N

Dimensionality of the search space

p_size

Population size

m_gen

Maximum number of generations

\(\chi\)

Constriction factor

\(c_{1} \left( { > 0} \right)\)

Cognitive learning rate

\(c_{2} \left( { > 0} \right)\)

Social learning rate

\(r_{1}\), \(r_{2}\)

Uniformly distributed random numbers lying in the interval [0, 1].

\(v_{i}^{(k)}\)

Velocity of ith particle at kth generation/iteration

\(x_{i}^{(k)}\)

Position of ith particle of population at kth generation

\(p_{i}^{(k)}\)

Best previous position of ith particle at kth generation

\(p_{g}^{(k)}\)

Position of the best particle among all the particles in the population

The algorithms of the PSO-CO and WQPSO are given below.

Algorithm of particle swarm optimization with constriction (PSO-CO)

Step 1. Set all PSO parameters and bounds of the decision variables.

Step 2. Set a population size of particles with random positions and velocities.

Step 3. Determine the fitness value of all particles.

Step 4. Save track of the locations where each individual has its highest fitness so far.

Step 5. Save track of the position with the global best fitness.

Step 6. Update the velocity of each particle by using the following equation:

\(v_{i}^{(k + 1)} = \chi \left[ {v_{i}^{(k)} + C_{1} r_{1} \left( {p_{i}^{(k)} - x_{i}^{(k)} } \right) + c_{2} r_{2} \left( {p_{g}^{(k)} - x_{i}^{(k)} } \right)} \right]\)

where

\(\chi = \frac{2}{{\left| {2 - (c_{1} + c_{2} ) - \sqrt {(c_{1} + c_{2} )^{2} - 4(c_{1} + c_{2} )} } \right|}}\)

Step 7. Update the position of each particle by using the following equation:

\(x_{i}^{(k + 1)} = x_{i}^{(k)} + v_{i}^{(k + 1)}\)

Step 8. If the stop criterion is reached, go to Step 9, else go to Step 3.

Step 9. Report the position and fitness of global best particle.

Step 10. Stop.

Algorithm of weighted quantum particle swarm optimization (WQPSO)

Step 1. Set all PSO parameters and bounds for the decision variables.

Step 2. Set a population size of particles with random positions.

Step 3. Determine the fitness value of each particle.

Step 4. Update the mean best position using the following equation:

\(m^{(k)} = \left( {m_{1}^{(k)} ,m_{2}^{(k)} , \ldots ,m_{n}^{(k)} } \right) = \left( {\frac{1}{{p_{size} }}\sum\limits_{i = 1}^{{p_{size} }} {\alpha_{i1} \tilde{p}_{i1}^{(k)} } ,\frac{1}{{p_{size} }}\sum\limits_{i = 1}^{{p_{size} }} {\alpha_{i2} \tilde{p}_{i2}^{(k)} } , \ldots ,\frac{1}{{p_{size} }}\sum\limits_{i = 1}^{{p_{size} }} {\alpha_{in} \tilde{p}_{in}^{(k)} } } \right)\)

where \(\alpha_{i}\) is the weighted coefficient and \(\alpha_{id}\) is the dimension coefficient of every particle.

Step 5. Compare each particle’s fitness with the particle’s pbest. Save better one as pbest.

Step 6. Compare current gbest position with earlier gbest position.

Step 7. Update the position of each particle using the following equation:

\(x_{ij}^{(k)} = \tilde{p}_{ij}^{(k)} \pm \beta^{\prime } \left| {m_{j}^{(k)} - x_{ij}^{(k)} } \right|\log \left( {\frac{1}{{u_{j} }}} \right)\)

Step 8. If the stop criterion is met, go to Step 9, else go to Step 3.

Step 9. Report the position and fitness of global best particle.

Step 10. Stop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, A.A., Cárdenas-Barrón, L.E. & Tiwari, S. A two-warehouse inventory model for non-instantaneous deteriorating items with interval-valued inventory costs and stock-dependent demand under inflationary conditions. Neural Comput & Applic 31, 1931–1948 (2019). https://doi.org/10.1007/s00521-017-3168-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3168-4

Keywords

Mathematics Subject Classification

Navigation