Skip to main content

Advertisement

Log in

Boundary control design for conservation laws in the presence of measurement disturbances

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

Boundary feedback control design for systems of linear hyperbolic conservation laws in the presence of boundary measurements affected by disturbances is studied. The design of the controller is performed to achieve input-to-state stability (ISS) with respect to measurement disturbances with a minimal gain. The closed-loop system is analyzed as an abstract dynamical system with inputs. Sufficient conditions in the form of dissipation functional inequalities are given to establish an ISS bound for the closed-loop system. The control design problem is turned into an optimization problem over matrix inequality constraints. Semidefinite programming techniques are adopted to devise systematic control design algorithms reducing the effect of measurement disturbances. The effectiveness of the approach is extensively shown in several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. We use the fact that for any \(a, b\in \mathbb {R}_{\ge 0}\), \(\sqrt{a^2+b^2}\le a+b\).

  2. Convergence of \(\eta _k(0)\) to \(\eta (0)\) follows from (21) thanks to standard Sobolev embedding arguments; see, e.g., [7, Theorem 8.8, page 212].

  3. Convergence of \(\Vert \eta _k\Vert _{\mathcal {L}^\infty ((0, t); \mathbb {R}^{n_p})}\) to \(\Vert \eta \Vert _{\mathcal {L}^\infty ((0, t); \mathbb {R}^{n_p})}\) follows from (21) thanks to [7, Theorem 8.8, page 212].

  4. Numerical solutions to SDP problems are obtained in Matlab® via SDPT3 [47] thanks to YALMIP [34]. Numerical integration of hyperbolic PDEs is performed via the use of the Lax–Friedrichs (Shampine’s two-step variant) scheme implemented in Matlab® by Shampine [43]. Code at https://github.com/f-ferrante/MCSS2020_HyperbolicISS.

References

  1. Ahmadi M, Valmorbida G, Papachristodoulou A (2016) Dissipation inequalities for the analysis of a class of PDEs. Automatica 66:163–171

    Article  MathSciNet  MATH  Google Scholar 

  2. Apkarian P, Tuan Hoang D, Bernussou J (2001) Continuous-time analysis, eigenstructure assignment, and \(h_2\) synthesis with enhanced linear matrix inequalities (LMI) characterizations. IEEE Trans Autom Control 46(12):1941–1946

    Article  MATH  Google Scholar 

  3. Arendt W, Batty CJK, Hieber M, Neubrander F (2011) Vector-valued Laplace transforms and Cauchy problems, vol 96. Springer Science and Business Media, Berlin

    Book  MATH  Google Scholar 

  4. Barreau M, Seuret A, Gouaisbaut F, Baudouin L (2018) Lyapunov stability analysis of a string equation coupled with an ordinary differential system. IEEE Trans Autom Control 63(11):3850–3857

    Article  MathSciNet  MATH  Google Scholar 

  5. Bastin G, Coron J-M (2016) Stability and boundary stabilization of 1-D hyperbolic systems volume 88 of progress in nonlinear differential equations and their applications. Springer, Berlin

    Book  MATH  Google Scholar 

  6. Boyd S, El Ghaoui L, Feron E, Balakrishnan V (1997) Linear matrix inequalities in system and control theory. Society for Industrial and Applied Mathematics, Philadelphia

    MATH  Google Scholar 

  7. Brezis H (2010) Functional analysis. Sobolev spaces and partial differential equations. Springer Science and Business Media, Berlin

    Google Scholar 

  8. Bribiesca Argomedo F, Witrant E, Prieur C (2012) D1-input-to-state stability of a time-varying nonhomogeneous diffusive equation subject to boundary disturbances. In: Proceedings of the American control conference, pp 2978–2983

  9. Bribiesca Argomedo F, Witrant E, Prieur C (2013) Safety factor profile control in a Tokamak. Springer International Publishing, Berlin

    MATH  Google Scholar 

  10. Castillo F, Witrant E, Prieur C, Dugard L (2012) Dynamic boundary stabilization of linear and quasi-linear hyperbolic systems. In: Proceedings of the IEEE 51st conference on decision and control, pp 2952–2957, Maui (HI), USA

  11. Castillo F, Witrant E, Prieur C, Dugard L (2013) Boundary observers for linear and quasi-linear hyperbolic systems with application to flow control. Automatica 49(11):3180–3188

    Article  MathSciNet  MATH  Google Scholar 

  12. Chaillet A, Pepe P (2018) Integral input-to-state stability of delay systems based on Lyapunov-Krasovskii functionals with point-wise dissipation rate. In: Proceedings of the 2018 IEEE conference on decision and control (CDC), pp 5451–5456

  13. Cheney W (2013) Analysis for applied mathematics, vol 208. Springer Science and Business Media, Berlin

    MATH  Google Scholar 

  14. Coclite GM, Garavello M, Piccoli B (2005) Traffic flow on a road network. SIAM J Math Anal 36(6):1862–1886

    Article  MathSciNet  MATH  Google Scholar 

  15. Curtain R, Zwart H (1995) An introduction to infinite-dimensional linear systems theory. Springer, Berlin

    Book  MATH  Google Scholar 

  16. Curtain RF, Zwart H (2012) An introduction to infinite-dimensional linear systems theory, vol 21. Springer Science and Business Media, Berlin

    MATH  Google Scholar 

  17. Dashkovskiy S, Kosmykov M (2013) Input-to-state stability of interconnected hybrid systems. Automatica 49(4):1068–1074

    Article  MathSciNet  MATH  Google Scholar 

  18. Dashkovskiy S, Mironchenko A (2013) Input-to-state stability of infinite-dimensional control systems. Math Control Signals Syst 25(1):1–35

    Article  MathSciNet  MATH  Google Scholar 

  19. Dashkovskiy S, Rüffer B, Wirth F (2007) An ISS small gain theorem for general networks. Math Control Signals Syst 19(2):93–122

    Article  MathSciNet  MATH  Google Scholar 

  20. Dashkovskiy SN, Ruffer BS, Wirth FR (2008) Applications of the general Lyapunov ISS small-gain theorem for networks. In: Proceedings of the 47th IEEE conference on decision and control, pp 25–30

  21. Diagne A, Bastin G, Coron J-M (2012) Lyapunov exponential stability of 1-d linear hyperbolic systems of balance laws. Automatica 48(1):109–114

    Article  MathSciNet  MATH  Google Scholar 

  22. Espitia N, Girard A, Marchand N, Prieur C (2016) Event-based control of linear hyperbolic systems of conservation laws. Automatica 70:275–287

    Article  MathSciNet  MATH  Google Scholar 

  23. Espitia N, Tanwani A, Tarbouriech S (2017) Stabilization of boundary controlled hyperbolic PDEs via Lyapunov-based event triggered sampling and quantization. In: Proceedings of the IEEE 56th conference on decision and control, pp 1266–1271

  24. Ferrante F, Prieur C (2018) Boundary control design for linear conservation laws in the presence of energy-bounded measurement noise. In: Proceedings of the 57th IEEE conference on decision and control, pp 6550–6555

  25. Jacob B, Morris K, Zwart H (2015) \(C_0\)-semigroups for hyperbolic partial differential equations on a one-dimensional spatial domain. J Evol Equ 15(2):493–502

    Article  MathSciNet  MATH  Google Scholar 

  26. Jacob B, Nabiullin R, Partington J, Schwenninger F (2016) On input-to-state-stability and integral input-to-state-stability for parabolic boundary control systems. In: Proceddings of the IEEE 55th conference on decision and control, pp 2265–2269

  27. Jacob B, Nabiullin R, Partington JR, Schwenninger FL (2018) Infinite-dimensional input-to-state stability and Orlicz spaces. SIAM J Control Optim 56(2):868–889

    Article  MathSciNet  MATH  Google Scholar 

  28. Jacob B, Schwenninger FL, Zwart H (2019) On continuity of solutions for parabolic control systems and input-to-state stability. J Differ Equ 266(10):6284–6306

    Article  MathSciNet  MATH  Google Scholar 

  29. Karafyllis I, Krstic M (2019) Input-to-state stability for PDEs. communications and control engineering. Springer, Berlin

    MATH  Google Scholar 

  30. Khalil H (2002) Nonlinear systems. Prentice Hall, New Jersey

    MATH  Google Scholar 

  31. Krstic M, Smyshlyaev A (2008) Boundary control of pdes: a course on backstepping designs. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  32. Lamare P-O, Girard A, Prieur C (2016) An optimisation approach for stability analysis and controller synthesis of linear hyperbolic systems. ESAIM Control Optim Calc Var 22(4):1236–1263

    Article  MathSciNet  MATH  Google Scholar 

  33. Lhachemi H, Shorten R (2019) ISS property with respect to boundary disturbances for a class of riesz-spectral boundary control systems. Automatica 109:108504

    Article  MathSciNet  MATH  Google Scholar 

  34. Lofberg J (2007) Yalmip: A toolbox for modeling and optimization in matlab. In: Computer aided control systems design, 2004 IEEE international symposium on, pp 284–289. IEEE

  35. Mironchenko A, Ito H (2016) Characterizations of integral input-to-state stability for bilinear systems in infinite dimensions. Math Control Relat Fields 6(3):447–466

    Article  MathSciNet  MATH  Google Scholar 

  36. Mironchenko A, Prieur C (2019) ISS of infinite-dimensional systems: recent results and open questions. SIAM Review 62(3):529–614

    Article  MATH  Google Scholar 

  37. Mironchenko A, Wirth F (2018) Lyapunov characterization of input-to-state stability for semilinear control systems over Banach spaces. Syst Control Lett 119:64–70

    Article  MathSciNet  MATH  Google Scholar 

  38. Pepe P (2009) Input-to-state stabilization of stabilizable time-delay, control-affine nonlinear systems. IEEE Trans Autom Control 54(7):1688–1693

    Article  MathSciNet  MATH  Google Scholar 

  39. Pepe P, Jiang Zhong-Ping (2006) A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems. Syst Control Lett 55(12):1006–1014

    Article  MathSciNet  MATH  Google Scholar 

  40. Pipeleers G, Demeulenaere B, Swevers J, Vandenberghe L (2009) Extended LMI characterizations for stability and performance of linear systems. Syst Control Lett 58(7):510–518

    Article  MathSciNet  MATH  Google Scholar 

  41. Prieur C, Winkin J (2018) Boundary feedback control of linear hyperbolic systems: application to the Saint–Venant–Exner equations. Automatica 89:44–51

    Article  MathSciNet  MATH  Google Scholar 

  42. Safi M, Baudouin L, Seuret A (2017) Tractable sufficient stability conditions for a system coupling linear transport and differential equations. Syst Control Lett 110:1–8

    Article  MathSciNet  MATH  Google Scholar 

  43. Shampine LF (2005) Solving hyperbolic PDEs in MATLAB. Appl Numer Anal Comput Math 2(3):346–358

    Article  MathSciNet  MATH  Google Scholar 

  44. Sontag ED (2007) Input to state stability: basic concepts and results. Nonlinear and optimal control theory. Springer-Verlag, Berlin, pp 163–220

    Google Scholar 

  45. Tang Y, Prieur C, Girard A (2015) Tikhonov theorem for linear hyperbolic systems. Automatica 57:1–10

    Article  MathSciNet  MATH  Google Scholar 

  46. Trinh N-T, Andrieu V, Xu C-Z (2017) Design of integral controllers for nonlinear systems governed by scalar hyperbolic partial differential equations. IEEE Trans Autom Control 62(9):4527–4536

    Article  MathSciNet  MATH  Google Scholar 

  47. Tütüncü RH, Toh K-C, Todd MJ (2003) Solving semidefinite-quadratic-linear programs using SDPT3. Math progr 95(2):189–217

    Article  MathSciNet  MATH  Google Scholar 

  48. Valmorbida G, Ahmadi M, Papachristodoulou A (2016) Stability analysis for a class of partial differential equations via semidefinite programming. IEEE Trans Autom Control 61(6):1649–1654

    Article  MathSciNet  MATH  Google Scholar 

  49. Weldegiyorgis GY, Banda Mapundi K (2020) An analysis of the input-to-state-stabilisation of linear hyperbolic systems of balance laws with boundary disturbances. arXiv preprint arXiv:2006.02492

  50. Zhang L, Prieur C (2017) Necessary and sufficient conditions on the exponential stability of positive hyperbolic systems. IEEE Trans Autom Control 62(7):3610–3617

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Ferrante.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been partially supported by MIAI @Grenoble Alpes (ANR-19-P3IA-0003).

Appendix A Ancillary results and definitions

Appendix A Ancillary results and definitions

Definition A1

[15] Let \(\mathcal {Z}\) be a Hilbert space. The function \( \mathscr {T}:\mathbb {R}_{\ge 0}\rightarrow \mathscr {L}(\mathcal {Z}, \mathcal {Z})\) is a \(\mathcal {C}_0\)-semigroup on \(\mathcal {Z}\) if it satisfies the following properties:

  1. (a)

    For all \(t, s\in \mathbb {R}_{\ge 0}\), \( \mathscr {T}(t+s)= \mathscr {T}(t) \mathscr {T}(s)\)

  2. (b)

    \( \mathscr {T}(0)=\mathbf {I}\)

  3. (c)

    For all \(z_0\in \mathcal {Z}\), \(\displaystyle \lim _{t\rightarrow 0^+}\Vert \mathscr {T}(t)z_0-z_0\Vert =0\)

Definition A2

[15] Let \(\mathcal {Z}\) be a Hilbert space and \( \mathcal {A}:{\text {dom}}\mathcal {A}\rightarrow \mathcal {Z}\). We say that \( \mathcal {A}\) generates a \(\mathcal {C}_0\)-semigroup \( \mathscr {T}\) on \(\mathcal {Z}\) if for all \(z\in {\text {dom}}\mathcal {A}\)

$$\begin{aligned} {\mathcal {A}}z=\lim _{t\rightarrow 0^+}\frac{1}{t}\left( \mathscr {T}(t)-\mathbf {I}\right) z \end{aligned}$$

\(\square \)

Definition A3

([13]) Let X and Y be linear normed spaces, U be an open subset of X, \(f:U\rightarrow Y\), and \(x\in U\). We say that f is Fréchet differentiable at x if there exists \(L\in \mathscr {L}(X,Y)\) such that

$$\begin{aligned} \lim _{h\rightarrow 0}\frac{\Vert f(x+h)-f(x)-Lh\Vert _Y}{\Vert h\Vert _X}=0 \end{aligned}$$

In particular L is the Fréchet derivative of f at x and is denoted by Df(x). When \(X=\mathbb {R}\), we denote

$$\begin{aligned} \dot{f}(x)=\lim _{h\rightarrow 0}\frac{f(x+h)-f(x)}{h} \end{aligned}$$

\(\square \)

Lemma A1

Let \(\psi \in \mathcal {C}^0([0, 1]; \mathbb {R}), G\in \mathbb {S}_+^n\) and \(\mathcal {L}^2((0,1); \mathbb {R}^{n_p})\) be endowed with its standard inner product. Consider the following functional

$$\begin{aligned} \begin{aligned} V:&\mathcal {L}^2((0,1); \mathbb {R}^{n_p})\rightarrow \mathbb {R}\\&X\mapsto V(X):=\int _0^1\psi (z)\langle G X(z), X(z)\rangle _{\mathbb {R}^{n_p}} \mathrm{d}z \end{aligned} \end{aligned}$$

Then, V is Fréchet differentiable on \(\mathcal {L}^2((0,1); \mathbb {R}^{n_p})\) and in particular for each \(X, h\in \mathcal {L}^2((0,1); \mathbb {R}^{n_p})\)

$$\begin{aligned} \mathrm{DV}(X) h=2\langle \psi G X, h\rangle _{\mathcal {L}^2((0,1); \mathbb {R}^{n_p})} \end{aligned}$$

Proof

For any \(X, h\in \mathcal {L}^2((0,1); \mathbb {R}^{n_p})\), one has

$$\begin{aligned} \begin{aligned} V(X+h)-V(X)=&\int _0^1\psi (z)\left( \langle h(z), Gh(z) \rangle _{\mathbb {R}^{n_p}}\right. \\&+\left. 2 \langle X(z), Gh(z) \rangle _{\mathbb {R}^{n_p}} \right) \mathrm{d}z\\&\le \lambda _{\max }(G)\Vert \psi \Vert _{\mathcal {L}^\infty ((0,1);\mathbb {R})}\Vert h\Vert ^2_{\mathcal {L}^2((0,1); \mathbb {R}^{n_p})}\\&+2 \langle \psi GX, h\rangle _{\mathcal {L}^2((0,1); \mathbb {R}^{n_p})} \end{aligned} \end{aligned}$$

Thus, it follows that

$$\begin{aligned} \begin{aligned} \lim _{\displaystyle \Vert h\Vert _{\mathcal {L}^2((0,1); \mathbb {R}^{n_p})}\rightarrow 0}\frac{\vert V(X+h)-V(X)-2 \langle X, \psi Gh\rangle _{\mathcal {L}^2((0,1);\mathbb {R}^{n_p})}\vert }{\Vert h\Vert _{\mathcal {L}^2((0,1); \mathbb {R}^{n_p})}}=0 \end{aligned} \end{aligned}$$

This concludes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrante, F., Prieur, C. Boundary control design for conservation laws in the presence of measurement disturbances. Math. Control Signals Syst. 33, 49–77 (2021). https://doi.org/10.1007/s00498-020-00269-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-020-00269-5

Keywords

Navigation