Skip to main content
Log in

Input-to-state stability of infinite-dimensional control systems

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

We develop tools for investigation of input-to-state stability (ISS) of infinite-dimensional control systems. We show that for certain classes of admissible inputs, the existence of an ISS-Lyapunov function implies the ISS of a system. Then for the case of systems described by abstract equations in Banach spaces, we develop two methods of construction of local and global ISS-Lyapunov functions. We prove a linearization principle that allows a construction of a local ISS-Lyapunov function for a system, the linear approximation of which is ISS. In order to study the interconnections of nonlinear infinite-dimensional systems, we generalize the small-gain theorem to the case of infinite-dimensional systems and provide a way to construct an ISS-Lyapunov function for an entire interconnection, if ISS-Lyapunov functions for subsystems are known and the small-gain condition is satisfied. We illustrate the theory on examples of linear and semilinear reaction-diffusion equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Curtain RF, Zwart H (1995) An introduction to infinite-dimensional linear systems theory. Texts in applied mathematics. Springer, New York

    Book  Google Scholar 

  2. Dachkovski S (2003) Anisotropic function spaces and related semi-linear hypoelliptic equations. Math Nachr 248(249):40–61

    Article  MathSciNet  Google Scholar 

  3. Dashkovskiy S, Efimov D, Sontag E (2011) Input to state stability and allied system properties. Autom Remote Control 72:1579–1614

    Article  MathSciNet  MATH  Google Scholar 

  4. Dashkovskiy S, Mironchenko A (2010) On the uniform input-to-state stability of reaction-diffusion systems. In: Proceedings of the 49th IEEE conference on decision and control, Atlanta, GA, USA, December 15–17, 2010, pp 6547–6552

  5. Dashkovskiy S, Rüffer BS, Wirth FR (2006) An ISS Lyapunov function for networks of ISS systems. In: Proceedings of the 17th international symposium on mathematical theory of networks and systems (MTNS), Kyoto, Japan, July 24–28, 2006, pp 77–82

  6. Dashkovskiy S, Rüffer BS, Wirth FR (2007) An ISS small gain theorem for general networks. Math Control Signals Syst 19(2):93–122

    Article  MATH  Google Scholar 

  7. Dashkovskiy SN, Rüffer BS (2010) Local ISS of large-scale interconnections and estimates for stability regions. Syst Control Lett 59(3–4):241–247

    Google Scholar 

  8. Dashkovskiy SN, Rüffer BS, Wirth FR (2010) Small gain theorems for large scale systems and construction of ISS Lyapunov functions. SIAM J Control Optim 48(6):4089–4118

    Article  MathSciNet  MATH  Google Scholar 

  9. Engel KJ, Nagel R (2000) One-parameter semigroups for linear evolution equations. Graduate texts in mathematics, vol 194. Springer, New York. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt

  10. Evans LC (1998) Partial differential equations. Graduate studies in mathematics, vol 19. American Mathematical Society, Providence

  11. Grüne L (2002) Asymptotic behavior of dynamical and control systems under perturbation and discretization. Lecture notes in mathematics. Springer, Berlin

    Book  Google Scholar 

  12. Grüne L (2002) Input-to-state dynamical stability and its Lyapunov function characterization. IEEE Trans Autom Control 47(9):1499–1504

    Article  Google Scholar 

  13. Hahn W (1967) Stability of motion. Translated from the German manuscript by Arne P. Baartz. Die Grundlehren der mathematischen Wissenschaften, Band 138. Springer, New York

  14. Henry D (1981) Geometric theory of semilinear parabolic equations. Lecture notes in mathematics. Springer, Berlin

    Google Scholar 

  15. Hespanha JP, Liberzon D, Teel AR (2008) Lyapunov conditions for input-to-state stability of impulsive systems. Autom J IFAC 44(11):2735–2744

    Article  MathSciNet  MATH  Google Scholar 

  16. Hille E, Phillips RS (1996) Functional analysis and semi-groups. American mathematical society colloquium publications, vol 31. American Mathematical Society, Providence

  17. Jayawardhana B, Logemann H, Ryan EP (2008) Infinite-dimensional feedback systems: the circle criterion and input-to-state stability. Commun Inf Syst 8(4):413–414

    MathSciNet  MATH  Google Scholar 

  18. Jayawardhana B, Logemann H, Ryan EP (2011) The circle criterion and input-to-state stability. Control Syst IEEE 31(4):32–67

    Article  MathSciNet  Google Scholar 

  19. Jiang ZP, Mareels IMY, Wang Y (1996) A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems. Autom J IFAC 32(8):1211–1215

    Article  MathSciNet  MATH  Google Scholar 

  20. Karafyllis I (2007) A system-theoretic framework for a wide class of systems. II. Input-to-output stability. J Math Anal Appl 328(1):466–486

    Article  MathSciNet  MATH  Google Scholar 

  21. Karafyllis I, Jiang ZP (2010) New results in trajectory-based small-gain with application to the stabilization of a chemostat. http://arxiv.org/abs/1002.4489

  22. Karafyllis I, Jiang ZP (2011) Stability and stabilization of nonlinear systems. Communications and control engineering series. Springer, London

    Book  Google Scholar 

  23. Karafyllis I, Jiang ZP (2011) A vector small-gain theorem for general non-linear control systems. IMA J Math Control Inf 28(3):309–344

    Article  MathSciNet  MATH  Google Scholar 

  24. Lin Y, Sontag ED, Wang Y (1996) A smooth converse Lyapunov theorem for robust stability. SIAM J Control Optim 34(1):124–160

    Article  MathSciNet  MATH  Google Scholar 

  25. Mazenc F, Prieur C (2011) Strict Lyapunov functions for semilinear parabolic partial differential equations. Math Control Relat Fields 1:231–250

    Article  MathSciNet  MATH  Google Scholar 

  26. Mitrinović DS, Pečarić JE, Fink AM (1991) Inequalities involving functions and their integrals and derivatives. Mathematics and its applications (East European Series), vol 53. Kluwer, Dordrecht

  27. Murray JD (2003) Mathematical biology. II Spatial models and biomedical applications. Interdisciplinary applied mathematics, vol 18, 3rd edn. Springer, New York

  28. Pazy A (1983) Semigroups of linear operators and applications to partial differential equations. Applied mathematical sciences, vol 44. Springer, New York

  29. Pepe P, Jiang ZP (2006) A Lyapunov–Krasovskii methodology for ISS and iISS of time-delay systems. Syst Control Lett 55(12):1006–1014

    Article  MathSciNet  MATH  Google Scholar 

  30. Prieur C, Mazenc F (2012) ISS-lyapunov functions for time-varying hyperbolic systems of balance laws. In: Mathematics of control, signals, and systems (MCSS), pp 1–24

  31. Rüffer B (2007) Monotone dynamical systems, graphs, and stability of large-scale interconnected systems. PhD thesis, Fachbereich 3 (Mathematik & Informatik) der Universität Bremen

  32. Rüffer BS (2010) Monotone inequalities, dynamical systems, and paths in the positive orthant of Euclidean \(n\)-space. Positivity 14(2):257–283

    Article  MathSciNet  MATH  Google Scholar 

  33. Sontag ED (1989) Smooth stabilization implies coprime factorization. IEEE Trans Autom Control 34(4):435–443

    Article  MathSciNet  MATH  Google Scholar 

  34. Sontag ED (1998) Mathematical control theory: deterministic finite-dimensional systems. Texts in applied mathematics, vol 6, 2nd edn. Springer, New York

  35. Sontag ED (2008) Input to state stability: basic concepts and results. In: Nonlinear and optimal control theory. Lecture notes in mathematics, vol 1932. Springer, Berlin, pp 163–220

  36. Sontag ED, Wang Y (1995) On characterizations of the input-to-state stability property. Syst Control Lett 24(5):351–359

    Article  MathSciNet  MATH  Google Scholar 

  37. Sontag ED, Wang Y (1996) New characterizations of input-to-state stability. IEEE Trans Autom Control 41(9):1283–1294

    Article  MathSciNet  MATH  Google Scholar 

  38. Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond Ser B Biol Sci 237(641):37–72

    Article  Google Scholar 

  39. Willems JC (1972) Dissipative dynamical systems. I. General theory. Arch Ration Mech Anal 45:321–351

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was funded by the German Research Foundation (DFG) as a part of Collaborative Research Centre 637 “Autonomous Cooperating Logistic Processes—A Paradigm Shift and its Limitations”. We thank the anonymous reviewers for their comments and suggestions, which led to improvements in the presentation of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrii Mironchenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dashkovskiy, S., Mironchenko, A. Input-to-state stability of infinite-dimensional control systems. Math. Control Signals Syst. 25, 1–35 (2013). https://doi.org/10.1007/s00498-012-0090-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-012-0090-2

Keywords

Navigation