Skip to main content
Log in

Spatiotemporal analysis of ground-based woody plant leafing in response to temperature in temperate eastern China

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

The analysis of woody plant leafing in response to regional-scale temperature variation using ground-based phenology is usually limited by the sparse coverage and missing data of ground observation. In this study, a station-based multispecies method was proposed to generate spatiotemporal variation of woody plant leafing date using ground observations from the Chinese Phenological Observation Network during 1974–1996. The results show that the leafing date had slightly insignificant advance (−0.56 day decade−1), and the Arctic Oscillation (AO) index could explain 36 % variance of the spring leafing date anomaly. The leafing date had been substantially delayed (4 days) when AO shifted from an extreme high index state (2) in 1989–1990 to a relatively low state (0.1) in 1991–1996. The canonical correlation analysis (CCA) was used to demonstrate the temporal evolutions and spatial structures of interannual variations of the spring temperature and leafing date anomalies. The three CCA spatial patterns of leafing date anomaly are similar to those of spring temperature anomaly. The first spatial pattern shows ubiquitous warming, which is consistent with the ubiquitous advance in leafing date across the study area. The second and third spatial patterns present the regional differences featured by advanced (delayed) leafing associated with high (low) temperature. The results suggest that the spring leafing date anomaly is spatiotemporally coherent with the regional-scale temperature variations. Although we focus here on woody plant leafing in a historical period in temperate eastern China, our station-based multispecies method may be applicable to analysis of the ground-based phenology in response to regional-scale climatic variation in other regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahas R, Aasa A (2006) The effects of climate change on the phenology of selected Estonian plant, bird and fish populations. Int J Biometeorol 51(1):17–26

    Article  Google Scholar 

  • Badeck FW, Bondeau A, Böttcher K, Doktor D, Lucht W, Schaber J, Sitch S (2004) Responses of spring phenology to climate change. New Phytol 162(2):295–309

    Article  Google Scholar 

  • Barnett T, Preisendorfer R (1987) Origins and levels of monthly and seasonal forecast skill for United States surface air temperatures determined by canonical correlation analysis. Mon Weather Rev 115:1825–1850

    Article  Google Scholar 

  • Barnosky AD, Hadly EA, Bascompte J, Berlow EL, Brown JH, Fortelius M, Getz WM, Harte J, Hastings A, Marquet PA (2012) Approaching a state shift in Earth’s biosphere. Nature 486(7401):52–58

    Article  CAS  Google Scholar 

  • Barr AG, Black T, Hogg E, Griffis T, Morgenstern K, Kljun N, Theede A, Nesic Z (2007) Climatic controls on the carbon and water balances of a boreal aspen forest, 1994–2003. Glob Chang Biol 13(3):561–576

    Article  Google Scholar 

  • Basler D, Körner C (2012) Photoperiod sensitivity of bud burst in 14 temperate forest tree species. Agr Forest Meteorol 165:73–81

    Article  Google Scholar 

  • Bradley AV, Gerard FF, Barbier N, Weedon GP, Anderson LO, Huntingford C, Aragao LE, Zelazowski P, Arai E (2011) Relationships between phenology, radiation and precipitation in the Amazon region. Glob Chang Biol 17(6):2245–2260

    Article  Google Scholar 

  • Cayan DR, Dettinger MD, Kammerdiener SA, Caprio JM, Peterson DH (2001) Changes in the onset of spring in the western United States. Bull Am Meteorol Soc 82(3):399–415

    Article  Google Scholar 

  • Chen X, Xu L (2012a) Temperature controls on the spatial pattern of tree phenology in China’s temperate zone. Agr Forest Meteorol 154:195–202

    Article  Google Scholar 

  • Chen X, Xu L (2012b) Phenological responses of Ulmus pumila (Siberian Elm) to climate change in the temperate zone of China. Int J Biometeorol 56(4):695–706

    Article  Google Scholar 

  • Chen X, Hu B, Yu R (2005) Spatial and temporal variation of phenological growing season and climate change impacts in temperate eastern China. Glob Chang Biol 11(7):1118–1130

    Article  Google Scholar 

  • Chmielewski FM, Rötzer T (2002) Annual and spatial variability of the beginning of growing season in Europe in relation to air temperature changes. Climate Res 19(3):257–264

    Article  Google Scholar 

  • Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22(7):357–365. doi:10.1016/j.tree.2007.04.003

    Article  Google Scholar 

  • Cong N, Piao S, Chen A, Wang X, Lin X, Chen S, Han S, Zhou G, Zhang X (2012) Spring vegetation green-up date in China inferred from SPOT NDVI data: a multiple model analysis. Agr Forest Meteorol 165:104–113

    Article  Google Scholar 

  • Cong N, Wang T, Nan H, Ma Y, Wang X, Myneni RB, Piao S (2013) Changes in satellite-derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: a multimethod analysis. Glob Chang Biol 19(3):881–891

    Article  Google Scholar 

  • Crimmins TM, Crimmins MA, David Bertelsen C (2010) Complex responses to climate drivers in onset of spring flowering across a semi-arid elevation gradient. J Ecol 98(5):1042–1051

    Article  Google Scholar 

  • Dai J, Wang H, Ge Q (2013a) Multiple phenological responses to climate change among 42 plant species in Xi’an, China. Int J Biometeorol 57:749–758

    Article  Google Scholar 

  • Dai J, Wang H, Ge Q (2013b) The spatial pattern of leaf phenology and its response to climate change in China. Int J Biometeorol :1–8

  • de Beurs KM, Henebry GM (2008) Northern annular mode effects on the land surface phenologies of Northern Eurasia. J Clim 21(17):4257–4279

    Article  Google Scholar 

  • Estrella N, Sparks TH, Menzel A (2009) Effects of temperature, phase type and timing, location, and human density on plant phenological responses in Europe. Climate Res 39(3):235–248

    Article  Google Scholar 

  • Grogan J, Schulze M (2012) The impact of annual and seasonal rainfall patterns on growth and phenology of emergent tree species in southeastern Amazonia, Brazil. Biotropica 44(3):331–340

    Article  Google Scholar 

  • Hotelling H (1936) Relations between two sets of variates. Biometrika 28(3/4):321–377

    Article  Google Scholar 

  • Jolly WM, Running SW (2004) Effects of precipitation and soil water potential on drought deciduous phenology in the Kalahari. Glob Chang Biol 10(3):303–308

    Article  Google Scholar 

  • Körner C, Basler D (2010) Phenology under global warming. Science 327(5972):1461–1462

    Article  Google Scholar 

  • Liang L, Schwartz MD, Fei S (2011) Validating satellite phenology through intensive ground observation and landscape scaling in a mixed seasonal forest. Remote Sens Environ 115(1):143–157. doi:10.1016/j.rse.2010.08.013

    Article  Google Scholar 

  • Ma T, Zhou C (2012) Climate-associated changes in spring plant phenology in China. Int J Biometeorol 56(2):269–275. doi:10.1007/s00484-011-0428-3

    Article  Google Scholar 

  • Menzel A (2002) Phenology: its importance to the global change community. Clim Chang 54(4):379–385

    Article  Google Scholar 

  • Menzel A (2003) Plant phenological anomalies in Germany and their relation to air temperature and NAO. Clim Chang 57(3):243–263

    Article  Google Scholar 

  • Menzel A, Estrella N, Testka A (2005) Temperature response rates from long-term phenological records. Climate Res 30(1):21

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-KÜBler K, Bissolli P, BraslavskÁ OG, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Å, Defila C, Donnelly A, Filella Y, Jatczak K, MÅGe F, Mestre A, Nordli Ø, PeÑUelas J, Pirinen P, RemiŠOvÁ V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski F-E, Zach S, Zust ANA (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12(10):1969–1976. doi:10.1111/j.1365-2486.2006.01193.x

    Article  Google Scholar 

  • Menzel A, Seifert H, Estrella N (2011) Effects of recent warm and cold spells on European plant phenology. Int J Biometeorol 55(6):921–932. doi:10.1007/s00484-011-0466-x

    Article  Google Scholar 

  • Morin X, Lechowicz MJ, Augspurger C, O’KEEFE J, Viner D, Chuine I (2009) Leaf phenology in 22 North American tree species during the 21st century. Glob Chang Biol 15(4):961–975

    Article  Google Scholar 

  • Morisette JT, Richardson AD, Knapp AK, Fisher JI, Graham EA, Abatzoglou J, Wilson BE, Breshears DD, Henebry GM, Hanes JM (2008) Tracking the rhythm of the seasons in the face of global change: phenological research in the 21st century. Front Ecol Environ 7(5):253–260

    Article  Google Scholar 

  • Nordli Ø, Wielgolaski F-E, Bakken AK, Hjeltnes SH, Måge F, Sivle A, Skre O (2008) Regional trends for bud burst and flowering of woody plants in Norway as related to climate change. Int J Biometeorol 52(7):625–639

    Article  CAS  Google Scholar 

  • Partanen J, Koski V, Hänninen H (1998) Effects of photoperiod and temperature on the timing of bud burst in Norway spruce (Picea abies). Tree Physiol 18(12):811–816

    Article  Google Scholar 

  • Peng S, Piao S, Ciais P, Fang J, Wang X (2010) Change in winter snow depth and its impacts on vegetation in China. Glob Chang Biol 16(11):3004–3013

    Google Scholar 

  • Peñuelas J, Filella I (2001) Responses to a warming world. Science 294(5543):793–795

    Article  Google Scholar 

  • Piao S, Fang J, Zhou L, Ciais P, Zhu B (2006) Variations in satellite-derived phenology in China’s temperate vegetation. Glob Chang Biol 12(4):672–685

    Article  Google Scholar 

  • Piao S, Friedlingstein P, Ciais P, Viovy N, Demarty J (2007) Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob Biogeochem Cycles 21(3), GB3018

    Article  Google Scholar 

  • Piao S, Wang X, Clals P, Zhu B, Wang T, Liu J (2011) Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob Chang Biol 17(10):3228–3239

    Article  Google Scholar 

  • Polgar CA, Primack RB (2011) Leaf-out phenology of temperate woody plants: from trees to ecosystems. New Phytol 191(4):926–941

    Article  Google Scholar 

  • Polgar CA, Primack RB (2013) Leaf out phenology in temperate forests. Biodivers Sci 21(1):111–116

    Article  Google Scholar 

  • Reyer CP, Leuzinger S, Rammig A, Wolf A, Bartholomeus RP, Bonfante A, de Lorenzi F, Dury M, Gloning P, Abou Jaoudé R (2013) A plant’s perspective of extremes: terrestrial plant responses to changing climatic variability. Glob Chang Biol 19(1):75–89

    Article  Google Scholar 

  • Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013) Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agr Forest Meteorol 169:156–173

    Article  Google Scholar 

  • Rötzer T, Chmielewski F-M (2001) Phenological maps of Europe. Climate Res 18(3):249–257

    Article  Google Scholar 

  • Schwartz MD (1998) Green-wave phenology. Nature 394(6696):839–840

    Article  CAS  Google Scholar 

  • Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the Northern Hemisphere. Glob Chang Biol 12(2):343–351

    Article  Google Scholar 

  • Studer S, Appenzeller C, Defila C (2005) Inter-annual variability and decadal trends in alpine spring phenology: a multivariate analysis approach. Clim Chang 73(3):395–414

    Article  Google Scholar 

  • Tang Q, Vivoni ER, Muñoz-Arriola F, Lettenmaier DP (2012) Predictability of evapotranspiration patterns using remotely-sensed vegetation dynamics during the North American monsoon. J Hydrometeorol 13:103–121

    Article  Google Scholar 

  • Tao F, Yokozawa M, Zhang Z, Hayashi Y, Ishigooka Y (2008) Land surface phenology dynamics and climate variations in the North East China Transect (NECT), 1982–2000. Int J Remote Sens 29(19):5461–5478

    Article  Google Scholar 

  • Vitasse Y, Basler D (2013) What role for photoperiod in the bud burst phenology of European beech. Eur J For Res 132(1):1–8

    Article  Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416(6879):389–395

    Article  CAS  Google Scholar 

  • Wang HJ, Dai JH, Ge QS (2012) The spatiotemporal characteristics of spring phenophase changes of Fraxinus chinensis in China from 1952 to 2007. Sci China Earth Sci 55:991–1000

    Google Scholar 

  • Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJB, Ault TR, Bolmgren K, Mazer SJ, McCabe GJ, McGill BJ, Parmesan C, Salamin N, Schwartz MD, Cleland EE (2012) Warming experiments underpredict plant phenological responses to climate change. Nature 485(7399):494–497. doi:10.1038/nature11014

    CAS  Google Scholar 

  • Worrall J (1999) Phenology and the changing seasons. Nature 399(6732):101–101

    Article  CAS  Google Scholar 

  • Wu X, Liu H (2013) Consistent shifts in spring vegetation green-up date across temperate biomes in China, 1982–2006. Glob Chang Biol 19(3):870–880

    Article  Google Scholar 

  • Xoplaki E, Luterbacher J, Burkard R, Patrikas I, Maheras P (2000) Connection between the large-scale 500 hPa geopotential height fields and precipitation over Greece during winter-time. Climate Res 14(2):129–146

    Article  Google Scholar 

  • Xu L, Chen X (2013) Regional unified model-based leaf unfolding prediction from 1960 to 2009 across northern China. Glob Chang Biol 19:1275–1284

    Article  Google Scholar 

  • Xu Y, Gao X, Shen Y, Xu C, Shi Y, Giorgi F (2009) A daily temperature dataset over China and its application in validating a RCM simulation. Adv Atmos Sci 26(4):763–772

    Article  CAS  Google Scholar 

  • Zhang X, Friedl MA, Schaaf CB, Strahler AH, Liu Z (2005) Monitoring the response of vegetation phenology to precipitation in Africa by coupling MODIS and TRMM instruments. J Geophys Res: Atmos (1984–2012) 110 (D12):27

  • Zhang B, Cao J, Bai Y, Zhou X, Ning Z, Yang S, Hu L (2013) Effects of rainfall amount and frequency on vegetation growth in a Tibetan alpine meadow. Clim Chang 118:197–212

    Google Scholar 

  • Zheng J, Ge Q, Hao Z (2002) Impacts of climate warming on plants phenophases in China for the last 40 years. Chin Sci Bull 47(21):1826–1831

    Article  Google Scholar 

  • Zheng J, Ge Q, Hao Z, Wang WC (2006) Spring phenophases in recent decades over eastern China and its possible link to climate changes. Clim Chang 77(3):449–462

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this research is provided by the National Basic Research Program of China (No. 2012CB955403), the National Natural Science Foundation of China (Nos. 41171031 and 41030101), and the Hundred Talents Program of the Chinese Academy of Sciences to the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuhong Tang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix S1

(XLSX 22.9 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Tang, Q., Liu, X. et al. Spatiotemporal analysis of ground-based woody plant leafing in response to temperature in temperate eastern China. Int J Biometeorol 58, 1583–1592 (2014). https://doi.org/10.1007/s00484-013-0762-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-013-0762-8

Keywords

Navigation