Skip to main content
Log in

Multifractal and long memory of humidity process in the Tarim River Basin

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Based on the daily data of relative humidity from 23 meteorological stations in the Tarim River Basin of northwest China during the period from 1961 to 2010, this paper analyzed the multifractal and long memory property of humidity process. Main findings are as follows: (1) The processes present scaling and multifractal property. (2) The left-skewed multifractal spectrum f(α) indicates that the time series of relative humidity is predominated by small fluctuations. (3) There exists long memory with the δ ∈ (0, 0.5) in the processes, except for Kalpin and Aksu’s exhibiting non-stationary long memory with the parameter δ being 0.67 and 0.69 respectively. (4) We found that on the whole, the degree of multifractality exhibits a strengthening trend with the longitude and latitude increasing, but decreasing trend with elevation rising; For length of long memory, we investigated that on the whole, the δ values increased with the longitude and latitude increasing, which indicates that the bigger the longitude and latitude is, the longer the memory of humidity process is, but the higher the elevation is, the shorter the memory of humidity process is.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723. doi:10.1109/TAC.1974.1100705

    Google Scholar 

  • Akinbode OM, Eludoyin AO, Fashae OA (2008) Temperature and relative humidity distributions in a medium-size administrative town in southwest Nigeria. J Environ Manag 87(1):95–105. doi:10.1016/j.jenvman.2007.01.018

    CAS  Google Scholar 

  • Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol 6(6):661–675. doi:10.1002/joc.3370060607

    Google Scholar 

  • Aon MA, Cortassa S, O’Rourke B (2006) The fundamental organization of cardiac mitochondria as a network of coupled oscillators. Biophys J 91(11):4317–4327. doi:10.1529/biophysj.106.087817

    CAS  Google Scholar 

  • Apergis N, Tsoumas C (2012) Long memory and disaggregated energy consumption: evidence from fossils, coal and electricity retail in the US. Energy Econ 34(4):1082–1087. doi:10.1016/j.eneco.2011.09.002

    Google Scholar 

  • Ashkenazy Y, Baker DR, Gildor H, Havlin S (2003) Nonlinearity and multifractality of climate change in the past 420,000 years. Geophys Res Lett 30(22):2146–2150. doi:10.1029/2003GL018099

    Google Scholar 

  • Atmanspacher H, Scheingraber H, Voges W (1988) Global scaling properties of a chaotic attractor reconstructed from experimental data. Phys Rev A 37(4):1314–1322. doi:10.1103/PhysRevA.37.1314

    Google Scholar 

  • Bacry E, Muzy JF, Arnéodo A (1993) Singularity spectrum of fractal signals from wavelet analysis: exact results. J Stat Phys 70(3–4):635–674. doi:10.1007/BF01053588

    Google Scholar 

  • Baillie RT (1996) Long memory processes and fractional integration in econometrics. J Econom 73(1):5–59. doi:10.1016/0304-4076(95)01732-1

    Google Scholar 

  • Bak P, Paczuski M (1993) Why nature is complex. Phys World 6:39–43

    Google Scholar 

  • Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: an explanation of 1/f noise. Phys Rev Lett 59(4):381–384. doi:10.1103/PhysRevLett.59.381

    Google Scholar 

  • Bak P, Tang C, Wiesenfeld K (1988) Self-organized criticality. Phys Rev A 38(1):364–374. doi:10.1103/PhysRevA.38.364

    Google Scholar 

  • Baselli G, Cerutti S, Civardi S, Liberati D, Lombardi F, Malliani A, Pagani M (1986) Spectral and cross-spectral analysis of heart rate and arterial blood pressure variability signals. Comput Biomed Res 19(6):520–534

    CAS  Google Scholar 

  • Bellon G, Ghil M, Le Treut H (2006) Scale separation for moisture-laden regions in the tropical atmosphere. Geophys Res Lett 33(1):L01802. doi:10.1029/2005GL024578

    Google Scholar 

  • Beran J (1994) Statistics for long-memory processes, vol 118. Chapman and Hall, London, pp 312–323

    Google Scholar 

  • Blender R, Fraedrich K, Hunt B (2006) Millennial climate variability: GCM-simulation and Greenland ice cores. Geophys Res Lett 33(4):L04710. doi:10.1029/2005GL024919

    Google Scholar 

  • Bloomfield P (1992) Trends in global temperature. Clim Chang 21(1):1–16. doi:10.1007/BF00143250

    Google Scholar 

  • Bodri L (1994) Hydrological disturbances of the conductive heat flow in stable continental crust. Tectonophysics 234(4):291–304. doi:10.1016/0040-1951(94)90229-1

    Google Scholar 

  • Böttcher F, Barth S, Peinke J (2007) Small and large scale fluctuations in atmospheric wind speeds. Stoch Environ Res Risk Assess 21(3):299–308. doi:10.1007/s00477-006-0065-2

    Google Scholar 

  • Box GEP, Jenkins GM (1970) Time series analysis. Holden-Day, San Francisco

    Google Scholar 

  • Buishand TA (1982) Some methods for testing the homogeneity of rainfall records. J Hydrol 58(1–2):11–27. doi:10.1016/0022-1694(82)90066-X

    Google Scholar 

  • Chen YN, Xu ZX (2005) Plausible impact of global climate change on water resources in the Tarim River Basin. Sci China 48(1):65–73. doi:10.1360/04yd0539

    Google Scholar 

  • Chen Z, Ivanov PC, Hu K, Stanley HE (2002) Effect of nonstationarities on detrended fluctuation analysis. Phys Rev E 65(4):041107. doi:10.1103/PhysRevE.65.041107

    Google Scholar 

  • Chen HP, Sun X, Chen HX, Wu ZQ, Wang BH (2004) Some problems in multifractal spectrum computation using a statistical method. New J Phys 6(1):84. doi:10.1088/1367-2630/6/1/084

    Google Scholar 

  • Chen YN, Takeuchi K, Xu CC, Chen YP, Xu ZX (2006) Regional climate change and its effects on river runoff in the Tarim Basin, China. Hydrol Process 20(10):2207–2216. doi:10.1002/hyp.6200

    Google Scholar 

  • Chen X, Lin GX, Fu ZT (2007) Long-range correlations in daily relative humidity fluctuations: a new index to characterize the climate regions over China. Geophys Res Lett 34(7):L07804. doi:10.1029/2006GL027755

    Google Scholar 

  • Cheung YW, Diebold FX (1994) On maximum likelihood estimation of the differencing parameter of fractionally-integrated noise with unknown mean. J Econom 62(2):301–316. doi:10.1016/0304-4076(94)90026-4

    Google Scholar 

  • Chung HS, Alonso JJ (2002) Using gradients to construct cokriging approximation models for high-dimensional design optimization problems. AIAA Pap 317:14–17. doi:10.2514/6.2002-317

    Google Scholar 

  • Comte F, Renault E (1998) Long memory in continuous-time stochastic volatility models. Math Finance 8(4):291–323. doi:10.1111/1467-9965.00057

    Google Scholar 

  • Dai A, Trenberth KE, Karl TR (1998) Global variations in droughts and wet spells: 1900–1995. Geophys Res Lett 25(17):3367–3370. doi:10.1029/98GL52511

    Google Scholar 

  • Deng MJ (2006) Changes of climate and runoff in Tarim River Basin and ecosystem restoration in the lower reaches of Tarim River. J Glaciol Geocryol 28(5):694–702 (in Chinese)

    Google Scholar 

  • Dessai S, Walter ME (2000) Self-organised criticality and the atmospheric sciences: selected review, new findings and future directions. XE Extreme events: developing a research agenda for the 21st century pp. 34–44

  • Diao YN, Feng GL, Liu SD, Huang SX, Lu WS, Chou JF (2004) Review of the study of nonlinear atmospheric dynamics in China (1999–2002). Adv Atmos Sci 21(3):399–406. doi:10.1007/BF02915567

    Google Scholar 

  • Dong WJ, Feng GL, Gong ZQ, Li JP (2005) Abrupt climate change detection based on heuristic segmentation algorithm. Acta Phys Sinica 54(11):5494–5499 (in Chinese)

    Google Scholar 

  • Dutta S (2010) Multifractal detrended fluctuation analysis of SENSEX fluctuation in the Indian stock market. Can J Phys 88(8):545–551. doi:10.1139/P10-039

    CAS  Google Scholar 

  • Feder T (1988) Fractals. Plenum Press, New York 14

    Google Scholar 

  • Feng GL (2001) On numerical predictability in the chaos system. Acta Phys Sinica 50(40):606–611 (in Chinese)

    CAS  Google Scholar 

  • Feng GL, Cao HX, Gao XQ, Dong WJ, Chou JF (2001) Prediction of precipitation during summer monsoon with self-memorial model. Adv Atmos Sci 18(5):701–709

    Google Scholar 

  • Feng T, Fu ZT, Mao JY (2010) The multi-fractal characteristics of climate variables in Beijing. Chin J Geophys (Chinese) 53(9):2037–2044. doi:10.3969/j.issn.0001-5733.2010

    Google Scholar 

  • Fraedrich K, Blender R (2003) Scaling of atmosphere and ocean temperature correlations in observations and climate models. Phys Rev Lett 90(10):108501. doi:10.1103/PhysRevLett.90.108501

    Google Scholar 

  • Gaffen DJ, Robock A, Elliott WP (1992) Annual cycles of tropospheric water vapor. J Geophys Res 97(16):18185–18193. doi:10.1029/92JD01999

    Google Scholar 

  • Gao LH, Fu ZT (2013) Multi-fractal behaviors of relative humidity over China. Atmos Ocean Sci Lett 6(2):74–78

    Google Scholar 

  • Gao XQ, Feng G, Dong WJ, Chou FJ (2003) On the predictability of chaotic systems with respect to maximally effective computation time. Acta Meteorol Sinica 19(2):134–139. doi:10.1007/BF02487674

    Google Scholar 

  • Ghosh D, Dutta S, Samanta S (2012) Fluctuation of gold price: a multi-fractal approach. Acta Phys Polonica-Ser B 43(6):1261–1274. doi:10.5506/APhysPolB.43.1261

    CAS  Google Scholar 

  • Gil-Alana LA (2008) Fractional integration and structural breaks at unknown periods of time. J Time Ser Anal 29(1):163–185. doi:10.1111/j.1467-9892.2007.00550.x

    Google Scholar 

  • Gil-Alana LA, Loomis D, Payne JE (2010) Does energy consumption by the US electric power sector exhibit long memory behavior? Energy Policy 38(11):7512–7518. doi:10.1016/j.enpol.2010.07.018

    Google Scholar 

  • Glisson C, James LR (2002) The cross-level effects of culture and climate in human service teams. J Organ Behav 23(6):767–794. doi:10.1002/job.162

    Google Scholar 

  • Goldberger AL, Amaral LA, Hausdorff JM, Ivanov PC, Peng CK, Stanley HE (2002) Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci USA 99(Suppl 1):2466–2472. doi:10.1073/pnas.012579499

    Google Scholar 

  • Graf HP (1983) Long-range correlations and estimation of the self-similarity parameter. Ph.D. dissertation, ETH, Zurich

  • Granger CWJ, Joyeux R (1980) An introduction to long memory time sequence models and fractional differencing. J Time Seq Anal 1(1):15–29. doi:10.1111/j.1467-9892.1980.tb00297.x

    Google Scholar 

  • Griggs DJ, Noguer M (2002) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Weather 57(8):267–269. doi:10.1256/004316502320517344

    Google Scholar 

  • Halsey TC, Jensen MH, Kadanoff LP, Procaccia I, Shraiman BI (1986) Fractal measures and their singularities: the characterization of strange sets. Phys Rev A 33(2):1141. doi:10.1103/PhysRevA.33.1141

    Google Scholar 

  • Han M, Yang LM, Wang SJ (2003) Changes of precipitation and air humidity of the recent 50 years in Changling county of Jilin province. J Jilin Agric Univ 25(4):425–428 (in Chinese)

    Google Scholar 

  • Hosking J (1984) Modeling persistence in hydrological time sequence using fractional differencing. Water Resour Res 20(12):1898–1908. doi:10.1029/WR020i012p01898

    Google Scholar 

  • Hu K, Ivanov PC, Chen Z, Carpena P, Stanley HE (2001) Effect of trends on detrended fluctuation analysis. Phys Rev E 64(1):011114. doi:10.1103/PhysRevE.64.011114

    CAS  Google Scholar 

  • Hurst HE (1951) The long-term dependence in stock returns. Trans Am Soc Civ Eng 116:770–799

    Google Scholar 

  • Ivanov PC, Amaral LAN, Goldberger AL, Havlin S, Rosenblum MG, Struzik ZR, Stanley HE (1999) Multifractality in human heartbeat dynamics. Nature 399(6735):461–465. doi:10.1038/20924

    CAS  Google Scholar 

  • Jaffard S (1992) Construction de fonctions multifractales ayant un spectre de singularités prescrit. Comptes rendus de l’Académie des sciences 315(1):19–24

    Google Scholar 

  • Jaffard S (1997a) Multifractal formalism for functions part I: results valid for all functions. SIAM J Math Anal 28(4):944–970. doi:10.1137/S0036141095282991

    Google Scholar 

  • Jaffard S (1997b) Multifractal formalism for functions part II: self-similar functions. SIAM J Math Anal 28(4):971–998. doi:10.1137/S0036141095283005

    Google Scholar 

  • Jegadeesh N (1991) Seasonality in stock price mean reversion: evidence from the US and the UK. J Finance 46(4):1427–1444. doi:10.1111/j.1540-6261.1991.tb04624.x

    Google Scholar 

  • Kantelhardt JW, Koscielny-Bunde E, Rego HH, Havlin S, Bunde A (2001) Detecting long-range correlations with detrended fluctuation analysis. Phys A 295(3):441–454. doi:10.1016/S0378-4371(01)00144-3

    Google Scholar 

  • Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE (2002) Multifractal detrended fluctuation analysis of nonstationary time series. Phys A 316(1):87–114. doi:10.1016/S0378-4371(02)01383-3

    Google Scholar 

  • Khon VC, Mokhov II, Roeckner E, Semenova VA (2007) Regional changes of precipitation characteristics in Northern Eurasia from simulations with global climate model. Glob Planet Chang 57(1–2):118–123. doi:10.1016/j.gloplacha.2006.11.006

    Google Scholar 

  • Kimoto K, Kamiya Y, Nonoyama M (1963) An electron microscope study on fine metal particles prepared by evaporation in argon gas at low pressure. Jpn J Appl Phys 2(11):702–713. doi:10.1143/JJAP.2.702

    CAS  Google Scholar 

  • Kobayashi M, Musha T (1982) 1/f fluctuation of heartbeat period. IEEE Trans Biomed Eng 6:456–457. doi:10.1109/TBME.1982.324972

    Google Scholar 

  • Koscielny-Bunde E, Bunde A, Havlin S, Roman HE, Goldreich Y, Schellnhuber H (1998) Indication of a universal persistence law governing atmospheric variability. Phys Rev Lett 81(3):729. doi:10.1103/PhysRevLett.81.729

    CAS  Google Scholar 

  • Koutsoyiannis D (2002) The Hurst phenomenon and fractional Gaussian noise made easy. Hydrol Sci J 47(4):573–595. doi:10.1080/02626660209492961

    Google Scholar 

  • Kravchenko AN, Boast CW, Bullock DG (1999) Multifractal analysis of soil spatial variability. Agron J 91(6):1033–1041

    Google Scholar 

  • Kravtsov VE, Yevtushenko OM, Snajberk P, Cuevas E (2012) Lévy flights and multifractality in quantum critical diffusion and in classical random walks on fractals. Phys Rev E 86(2):021136. doi:10.1103/PhysRevE.86.021136

    CAS  Google Scholar 

  • Kruse R, Sibbertsen P (2012) Long memory and changing persistence. Econ Lett 114(3):268–272. doi:10.1016/j.econlet.2011.10.026

    Google Scholar 

  • Lack DA, Quinn PK, Massoli P, Bates TS, Coffman D, Covert DS, Sierau B, Tucker S, Baynard T, Lovejoy E, Murphy DM, Ravishankara AR (2009) Relative humidity dependence of light absorption by mineral dust after long-range atmospheric transport from the Sahara. Geophys Res Lett 36(24):L24805. doi:10.1029/2009GL041002

    Google Scholar 

  • Lee CK, Ho DS, Yu CC, Wang CC, Hsiao TH (2003) Simple multifractal cascade model for the air pollutant concentration (APC) time sequence. Environmetrics 14(3):255–269. doi:10.1002/env.584

    CAS  Google Scholar 

  • Lee CK, Juang LC, Wang CC, Liao YY, Yu CC, Liu YC, Ho DS (2006) Scaling characteristics in ozone concentration time series (OCTS). Chemosphere 62(6):934–946. doi:10.1016/j.chemosphere.2005.05.046

    CAS  Google Scholar 

  • Leland WE, Wilson DV (1993) High time-resolution measurement and analysis of LAN traffic: Implications for LAN interconnection. In INFOCOM’91. Proceedings of tenth annual joint conference of the IEEE computer and communications societies. Networking in the 90 s. 3:1360–1366. doi:10.1109/INFCOM.1991.147663

  • Lenderink G, van Ulden A, van den Hurk B, Keller F (2007) A study on combining global and regional climate model results for generating climate scenarios of temperature and precipitation for the Netherlands. Clim Dyn 29(2–3):157–176. doi:10.1007/s00382-007-0227-z

    Google Scholar 

  • Lennartz S, Bunde A (2011) Distribution of natural trends in long-term correlated records: a scaling approach. Phys Rev E 84(2):021129. doi:10.1103/PhysRevE.84.021129

    Google Scholar 

  • Li QH, Chen YN, Shen YJ, Li XG, Xu JH (2011) Spatial and temporal trends of climate change in Xinjiang, China. J Geogr Sci 21(6):1007–1018. doi:10.1007/s11442-011-0896-8

    Google Scholar 

  • Lin GX, Fu ZT (2008) A universal model to characterize different multi-fractal behaviors of daily temperature records over China. Phys A 387(2–3):573–579. doi:10.1016/j.physa.2007.10.011

    Google Scholar 

  • Lin GX, Chen X, Fu ZT (2007) Temporal-spatial diversities of long-range correlation for relative humidity over China. Phys A 383(2):585–594. doi:10.1016/j.physa.2007.04.059

    Google Scholar 

  • Little MA, McSharry PE, Roberts SJ, Costello DAE, Moroz IM (2007) Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection. BioMed Eng Online 6(1):23. doi:10.1186/1475-925X-6-23

    Google Scholar 

  • Liu SD (1990) Earth system model and chaotic time series. Chin J Geophys 33(2):144–153 (in Chinese)

    Google Scholar 

  • Liu SD, Rong PP, Chen J (2000) The hierarchical structure of climate series. Acta Meteorol Sinica 58(1):110–114 (in Chinese)

    Google Scholar 

  • Liu BH, Xu M, Henderson M, Qi Y, Li YQ (2004) Taking China’s temperature: daily range, warming trends, and regional variations, 1955–2000. J Clim 17(22):4453–4462. doi:10.1175/3230.1

    Google Scholar 

  • Liu ZH, Zhang B, Wang LL, Wang HP, Yin Y (2011) Waiting time sequence of aftershocks of Wenchuan earthquake: a research based on chaos theory. J Nat Disasters 20(5):181–187 (in Chinese)

    Google Scholar 

  • Liu L, Xu ZX, Huang JX (2012) Spatio-temporal variation and abrupt changes for major climate variables in the Taihu Basin, China. Stoch Environ Res Risk Assess 26(6):777–791. doi:10.1007/s00477-011-0547-8

    Google Scholar 

  • Liu ZH, Xu JH, Shi K (2013) Self-organized criticality of climate change. Theor Appl Climatol. doi:10.1007/s00704-013-0929-6

    Google Scholar 

  • Lobato IN, Savin NE (1998) Real and spurious long-memory properties of stock-market data. J Bus Econ Stat 16(3):261–268. doi:10.1080/07350015.1998.10524760

    Google Scholar 

  • Lu FY, Yuan NM, Fu ZT, Mao JY (2012) Universal scaling behaviors of meteorological variables’ volatility and relations with original records. Phys A 391(20):4953–4962. doi:10.1016/j.physa.2012.05.031

    Google Scholar 

  • Luo YF, Lv DR, Zhou XJ, Li WL (2002) Analyses on the spatial distribution of aerosol optical depth over China in recent 30 years. Chin J Atmos Sci 26(6):721–730 (in Chinese)

    Google Scholar 

  • Ma JH, Guan H (2003) Systems science and its application in geography. Science Press, Beijing, p 134 (in Chinese)

    Google Scholar 

  • Macek WM (2007) Multifractality and intermittency in the solar wind. Nonlinear Processes Geophys 14(6):695–700. doi:10.5194/npg-14-695-2007

    Google Scholar 

  • Macek WM, Wawrzaszek A (2009) Evolution of asymmetric multifractal scaling of solar wind turbulence in the outer heliosphere. J Geophys Res 114(A3):A03108. doi:10.1029/2008JA013795

    Google Scholar 

  • Macek WM, Wawrzaszek A, Carbone V (2011) Observation of the multifractal spectrum at the termination shock by Voyager 1. Geophys Res Lett 38(19):L19103. doi:10.1029/2011GL049261

    Google Scholar 

  • Malamud BD, Turcotte DL (1999) Self-affine time series: I generation and analyses. Adv Geophys 40:1–90. doi:10.116/S0065-2687(08)60293-9

    Google Scholar 

  • Mandelbrot BB (1972) Possible refinement of the lognormal hypothesis concerning the distribution of energy dissipation in intermittent turbulence. Stat Models Turbul 12:333–351. doi:10.1007/3-540-05716-1_20

    Google Scholar 

  • Mandelbrot BB (1974) Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier. J Fluid Mech 62(2):331–358. doi:10.1017/S0022112074000711

    Google Scholar 

  • Mansuer S, Chu XZ (2007) Study on the change of climate and runoff volumes of the Tarim River Basin in recent 40 years. Areal Res Dev 26(4):97–101 (in Chinese)

    Google Scholar 

  • Marin CT, Bouten W, Sevink J (2000) Gross rainfall and its partitioning into throughfall, stemflow and evaporation of intercepted water in four forest ecosystems in western Amazonia. J Hydrol 237(1–2):40–57. doi:10.1016/S0022-1694(00)00301-2

    Google Scholar 

  • McLeod AI, Hippel AW (1978) Preservation of the rescaled adjusted range, 1: a reassessment of the Hurst phenomenon. Water Resour Res 14(3):491–508. doi:10.1029/WR014i003p00491

    Google Scholar 

  • Merritt WS, Alila Y, Barton M, Taylor B, Cohen S (2006) Hydrologic response to scenarios of climate change in sub watersheds of the Okanagan basin, British Columbia. J Hydrol 326(1–4):79–108. doi:10.1016/j.jhydrol.2005.10.025

    Google Scholar 

  • Millán H, Kalauzi A, Cukic M, Biondi R (2010) Nonlinear dynamics of meteorological variables: multifractality and chaotic invariants in daily records from Pastaza, Ecuador. Theor Appl Climatol 102(1–2):75–85. doi:10.1007/s00704-009-0242-6

    Google Scholar 

  • Nicolis G, Nicolis C (1991) Nonlinear dynamic systems in the geosciences. Kans Geol Surv Bull 233:33–42

    Google Scholar 

  • Palmer TN (2006) A nonlinear dynamical perspective on model error: a proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models. Q J R Meteorol Soc 127(572):279–304. doi:10.1002/qj.49712757202

    Google Scholar 

  • Payne RL, Mansfield R (1973) Relationships of perceptions of organizational climate to organizational structure, context, and hierarchical position. Adm Sci Q 18(4):515–526

    Google Scholar 

  • Pedron IT (2010) Correlation and multifractality in climatological time series. J Phys 246(1):012034. doi:10.1088/1742-6596/246/1/012034

    Google Scholar 

  • Peitgen HO, Jürgens H, Saupe D (1999) Chaos and Fractals. Springer, New York

    Google Scholar 

  • Peixoto JP, Abraham HO (1996) The climatology of relative humidity in the atmosphere. J Clim 9(12):3443–3463. doi:http://adsabs.harvard.edu/abs/1996JCli....9.3443P

    Google Scholar 

  • Peng CK, Mietus J, Hausdorff JM, Havlin S, Stanley HE, Goldberger AL (1993) Long-range anticorrelations and non-Gaussian behavior of the heartbeat. Phys Rev Lett 70(9):1343–1346. doi:10.1103/PhysRevLett.70.1343

    Google Scholar 

  • Peñuelas J, Boada M (2003) A global change-induced biome shift in the Montseny mountains (NE Spain). Glob Chang Biol 9(2):131–140. doi:10.1046/j.1365-2486.2003.00566.x

    Google Scholar 

  • Percival DB, Walden AT (2000) Wavelet methods for time series analysis. Cambridge University Press, UK, pp 279–284

    Google Scholar 

  • Pettit AN (1979) A non-parametric approach to the change-point detection. Appl Stat 28(2):126–135

    Google Scholar 

  • Priestley MB (1981) Spectral analysis and time series. Academic Press, London, p 383

    Google Scholar 

  • Qiu JH, Pan JD, Yang LQ, Yang JM, Dong YZ (1997) Variation of atmospheric aerosols over 10 sites in China during 1980–1994. Sci Atmos Sinica 21(6):725–733 (in Chinese)

    Google Scholar 

  • Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1(4):221–227. doi:10.1038/ngeo156

    CAS  Google Scholar 

  • Rasmusson EM (1972) Seasonal variation of tropical humidity parameters. In: Newell RE, Kidson JW, Vincent DG, Boer GJ (eds) The general circulation of the tropical almosphere, vol 1. The MIT Press, Cambridge, p 193–221

  • Ren HL, Chou JF (2007) Study progress in prediction strategy and methodology on numerical model. Adv Earth Sci 22(4):376–385 (in Chinese)

    Google Scholar 

  • Rial JA (2004) Abrupt climate change: chaos and order at orbital and millennial scales. Glob Planet Chang 41(2):95–109. doi:10.1016/j.gloplacha.2003.10.004

    Google Scholar 

  • Rind D, Chiou EW, Chu W, Larsen J, Oltmans S, Lerner J, McMaster L (1991) Positive water vapour feedback in climate models confirmed by satellite data. Nature 349:500–503. doi:10.1038/349500a0

    Google Scholar 

  • Robinson PM (1994) Time series with strong dependence. In Advances in econometrics, sixth world congress. vol 1, pp. 47–95

  • Roderick ML, Farquhar GD (2002) The cause of decreased pan evaporation over the past 50 years. Science 298(5597):1410–1411. doi:10.1126/science.1075390-a

    CAS  Google Scholar 

  • Ruiz-Medina MD, Angulo JM, Anh VV (2008) Multifractality in space–time statistical model. Stoch Environ Res Risk Assess 22(1):81–86. doi:10.1007/s00477-007-0155-9

    Google Scholar 

  • Samadder S, Ghosh K, Basu T (2013) Fractal analysis of prime Indian stock market indices. Fractals 21(1):1350003. doi:10.1142/S0218348X13500035

    Google Scholar 

  • Schumm SA, Lichty RW (1965) Time, space, and causality in geomorphology. Am J Sci 263(2):110–119. doi:10.2475/ajs.263.2.110

    Google Scholar 

  • Selvam AM (1990) Deterministic chaos, fractals, and quantum like mechanics in atmospheric flows. Can J Phys 68(9):L831–L841. doi:10.1139/p90-121

    Google Scholar 

  • Shackley S, Young P, Parkinson S, Wynne B (1998) Uncertainty, complexity and concepts of good science in climate change modelling: are GCMs the best tools? Clim Chang 38(2):159–205. doi:10.1023/A:1005310109968

    Google Scholar 

  • Shang P, Kamae S (2005) Fractal nature of time series in the sediment transport phenomenon. Chaos Solitons Fractals 26(3):997–1007. doi:10.1016/j.chaos.2005.01.051

    Google Scholar 

  • Shang JY, Liu ZL, Wang SL, Wang CB, Feng YF (2012) The role of small probability measure in the analysis about desulfurization limestone particles multi-fractal surface structure. Appl Surf Sci 263:143–148. doi:10.1016/j.apsusc.2012.09.018

    CAS  Google Scholar 

  • Shi SY, Liu SD, Fu ZT, Liu SK (2005) The characteristic analysis of weather and climate time series. Chin J Geophys 48(2):259–264. doi:10.1002/cjg2.652

    Google Scholar 

  • Shi K, Liu CQ, Ai NS (2009) Monofractal and multifractal approaches in investigating temporal variation of air pollution indexes. Fractals 17(4):513–521. doi:10.1142/S0218348X09004454

    Google Scholar 

  • Shi K, Liu CQ, Huang ZW, Zhang B, Su Y (2010) Comparative analysis of time-scaling properties about water pH in Poyang Lake inlet and outlet on the basis of fractal methods. Water Sci Technol 61(8):2113–2118. doi:10.2166/wst.2010.135

    CAS  Google Scholar 

  • Shi K, Liu CQ, Li SC (2013) Self-organized criticality: emergent complex behavior in PM10 pollution. Int J Atmos Sci 2013:7. doi:10.1155/2013/419694

    Google Scholar 

  • Shimizu Y, Thurner S, Ehrenberger K (2002) Multifractal spectra as a measure of complexity in human posture. Fractals 10(1):103–116. doi:10.1142/S0218348X02001130

    Google Scholar 

  • Sivakumar B (2001) Is a chaotic multi-fractal approach for rainfall possible? Hydrol Process 15(6):943–955. doi:10.1002/hyp.260

    Google Scholar 

  • Sobal J, Kettel Khan L, Bisogni C (1998) A conceptual model of the food and nutrition system. Soc Sci Med 47(7):853–863. doi:10.1016/S0277-9536(98)00104-X

    CAS  Google Scholar 

  • Sun X, Chen HP, Wu ZQ, Yuan YZ (2001) Multifractal analysis of Hang Seng index in Hong Kong stock market. Phys A 291(1–4):553–562. doi:10.1016/S0378-4371(00)00606-3

    Google Scholar 

  • Surratt G, Aronowicz J, Shine W, McCulley J (2004) Change in aqueous tear evaporation with change in relative humidity. Investig Ophthalmol Vis Sci 45:B65–92

    Google Scholar 

  • Szava-Kovats J (1938) Verteilung der Luftfeuchtigkeit auf die Erde. Annalen der Hydrographie und Maritimen Meteorol 66:373–378

    Google Scholar 

  • Taqqu MS, Teverovsky V, Willinger W (1995) Estimators for long-range dependence: an empirical study. Fractals 3(4):785–798. doi:10.1142/S0218348X95000692

    Google Scholar 

  • Telegadas K, London J (1954) A physical model of the northern hemisphere troposphere for winter and summer. New York University, Scientific Report No. 1, AF 19(122):165, 55. [Available from J. London, Depatrment of Astrophysical, Planetary and Atmospheric Sciences, University of Colorado, Boulder, CO 80309.]

  • Telesca L, Colangelo G, Lapenna V, Macchiatob M (2003) Monofractal and multifractal characterization of geoelectrical signals measured in southern Italy. Chaos Solitons Fractals 18(2):385–399. doi:10.1016/S0960-0779(02)00655-0

    Google Scholar 

  • Van der Schaaf J, Schoutenb JC, Johnssonc F, Van den Bleeka CM (2002) Non-intrusive determination of bubble and slug length scales in fluidized beds by decomposition of the power spectral density of pressure time series. Int J Multiph Flow 28(5):865–880. doi:10.1016/S0301-9322(01),00090-8

    Google Scholar 

  • Vattay G, Harnos A (1994) Scaling behavior in daily air humidity fluctuations. Phys Rev Lett 73(5):768–771. doi:10.1103/PhysRevLett.73.768

    Google Scholar 

  • Vauclin M, Vieira SR, Vachaud G, Nielsen DR (1983) The use of cokriging with limited field soil observations. Soil Sci Soc Am J 47(2):175–184. doi:10.2136/sssaj1983.03615995004700020001x

    Google Scholar 

  • Véhel JL, Vojak R (1998) Multifractal analysis of Choquet capacities. Adv Appl Math 20(1):1–43. doi:10.1006/aama 1996.0517

    Google Scholar 

  • Wang JF, Bras RL, Entekhabi D (1997) Structure in fluctuations of large-scale soil moisture climate due to external random forcing and internal feedbacks. Stoch Hydrol Hydraul 11(2):95–114. doi:10.1007/BF02427910

    Google Scholar 

  • Wang ZY, Ding YH, He JH, Yu J (2004) An updating analysis of the climate change in china in recent 50 years. Acta Meteorol Sinica 62(2):228–236 (in Chinese)

    Google Scholar 

  • Webster R (1985) Quantitative spatial analysis of soil in the field. Adv Soil Sci 3:1–70

    Google Scholar 

  • Webster R, Burgess TM (1980) Optimal interpolation and is arithmetic mapping of soil properties III changing drift and universal kriging. J Soil Sci 31(3):505–524. doi:10.1111/j.1365-2389.1980.tb02100.x

    Google Scholar 

  • West BJ, Zhang R, Sanders AW, Miniyar S, Zuckerman JH, Levine BD (1999) Fractal fluctuations in cardiac time series. Phys A 270(3):552–566. doi:10.1016/S0378-4371(99)00175-2

    CAS  Google Scholar 

  • Wu CS, Murray AT (2005) A cokriging method for estimating population density in urban areas. Comput Environ Urban Syst 29(5):558–579. doi:10.1016/j.compenvurbsys.2005.01.006

    Google Scholar 

  • Wunsch C (2003) The spectral description of climate change including the 100 ky energy. Clim Dyn 20(4):353–363. doi:10.1007/s00382-002-0279-z

    Google Scholar 

  • Xu JH, Chen YN, Li WH, Ji MH, Dong S (2009a) The complex nonlinear systems with fractal as well as chaotic dynamics of annual runoff processes in the three headwaters of the Tarim River. J Geog Sci 19(1):25–35. doi:10.1007/s11442-009-0025-0

    Google Scholar 

  • Xu JH, Chen YN, Li WH, Ji MH, Dong S, Hong YL (2009b) Wavelet analysis and nonparametric test for climate change in Tarim River Basin of Xinjiang during 1959–2006. Chin Geogr Sci 19(4):306–313. doi:10.1007/s11769-009-0306-7

    Google Scholar 

  • Xu ZX, Liu ZF, Fu GB, Chen YN (2010) Trends of major hydroclimatic variables in the Tarim River basin during the past 50 years. J Arid Environ 74(2):256–267. doi:10.1016/j.jaridenv.2009.08.014

    Google Scholar 

  • Xu JH, Chen YN, Li WH, Yang Y, Hong YL (2011) An integrated statistical approach to identify the nonlinear trend of runoff in the Hotan River and its relation with climatic factors. Stoch Environ Res Risk Assess 25(2):223–233. doi:10.1007/s00477-010-0433-9

    Google Scholar 

  • Xu JH, Chen YN, Li WH, Nie Q, Hong YL, Yang Y (2013a) The nonlinear hydro-climatic process in the Yarkand river, northwestern China. Stoch Environ Res Risk Assess 27(2):389–399. doi:10.1007/s00477-012-0606-9

    Google Scholar 

  • Xu JH, Chen YN, Li WH, Liu ZH, Wei CM, Tang J (2013b) Understanding the complexity of temperature dynamic in Xinjiang, China from multi-temporal scale and spatial perspective. Sci World J 2013:9. doi:10.1155/2013/259248

    Google Scholar 

  • Yang Q, He Q (2003) Interrelationship of climate change, runoff and human activities in Tarim River Basin. Q J Appl Meteorol 14(3):309–321 (in Chinese)

    Google Scholar 

  • Yang J, Li ZH (1999) Influence of relative humidity on shortwave radiative properties of atmospheric aerosol particles. Chin J Atmos Sci 23(2):239–247 (in Chinese)

    Google Scholar 

  • Yang Y, Xu JH, Hong YL, Lv GH (2012) The dynamic of vegetation coverage and its response to climate factors in Inner Mongolia, China. Stoch Environ Res Risk Assess 26(3):357–373. doi:10.1007/s00477-011-0481-9

    Google Scholar 

  • Yeşilırmak E (2013) Temporal changes of warm-season pan evaporation in a semi-arid basin in Western Turkey. Stoch Environ Res Risk Assess 27(2):311–321. doi:10.1007/s00477-012-0605-x

    Google Scholar 

  • Yonaiguchi N, Ida Y, Hayakawa M, Masuda S (2007) Fractal analysis for VHF electromagnetic noises and the identification of preseismic signature of an earthquake. J Atmos Sol Terr Phys 69(15):1825–1832. doi:10.1016/j.jastp.2007.08.002

    Google Scholar 

  • Yu J, Fang AL, Xiong WH (2008) Research on the long memory in international stock returns Chinese. J Manag Sci 16(4):24–29 (in Chinese)

    Google Scholar 

  • Yu B, Huang CM, Liu ZH, Wang HP, Wang LL (2011) A chaotic analysis on air pollution index change over past 10 years in Lanzhou, northwest China. Stoch Environ Res Risk Assess 25(5):643–653. doi:10.1007/s00477-011-0471-y

    Google Scholar 

  • Yuan Y, Zhuang XT, Liu ZY (2012) Price–volume multifractal analysis and its application in Chinese stock markets. Phys A 391(12):3484–3495. doi:10.1016/j.physa.2012.01.034

    Google Scholar 

  • Zhai P, Pan X (2003) Trends in temperature extremes during 1951–1999 in China. Geophys Res Lett 30(17):CLM9. doi:10.1029/2003GL018004

    Google Scholar 

  • Zhai PM, Zhang XB, Wan H, Pan XH (2005) Trends in total precipitation and frequency of daily precipitation extremes over China. J Clim 18(7):1096–1108. doi:10.1175/JCLI-3318.1

    Google Scholar 

  • Zhang YC, Li BL, Cheng WM (2004) Hydrological response of runoff to climate variation in Kaidu catchment. Resour Sci 26(6):69–76 (in Chinese)

    Google Scholar 

  • Zhang Q, Xu CY, Tao H, Jiang T, Chen YD (2010) Climate changes and their impacts on water resources in the arid regions: a case study of the Tarim River basin, China. Stoch Environ Res Risk Assess 24(3):349–358. doi:10.1007/s00477-009-0324-0

    CAS  Google Scholar 

  • Zhao FF, Xu ZX, Huang JX (2007) Long-term trend and abrupt change for major climate variables in the upper yellow river basin. Acta Meteorol Sinica 21(2):204–214

    Google Scholar 

  • Zou X, Zhai P, Zhang Q (2005) Variations in droughts over China: 1951–2003. Geophys Res Lett 32(4):L04707. doi:10.1029/2004GL021853

    Google Scholar 

  • Zuo HC, Li DL, Hu YQ, Bao Y, Lü SH (2005) Characteristics of climatic trends and correlation between pan-evaporation and environmental factors in the last 40 years over China. Chin Sci Bull 50(12):1235–1241. doi:10.1007/BF03183699

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Basic Research Program of China (973 Program; No: 2010CB951003), and the Director Fund of the Key Lab of GIScience of the Education Ministry PRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Xu, J., Chen, Z. et al. Multifractal and long memory of humidity process in the Tarim River Basin. Stoch Environ Res Risk Assess 28, 1383–1400 (2014). https://doi.org/10.1007/s00477-013-0832-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-013-0832-9

Keywords

Navigation