Skip to main content
Log in

Different responses of stem and soil CO2 efflux to pruning in a Chinese fir (Cunninghamia lanceolata) plantation

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Pruning significantly reduced stem CO 2 efflux, but had little effect on soil CO 2 efflux and root respiration. Pruning did not alter temperature sensitivity of CO 2 efflux from stem and soil.

Abstract

Pruning is one of the common silvicultural practices for Chinese fir (Cunninghamia lanceolata) plantations to produce knot-free wood. However, little is known about the effects of pruning on stem and soil CO2 efflux in Chinese fir plantations. In this study, we experimentally manipulated the canopy of Chinese fir by pruning the lower 50 % of the green crown length in a Chinese fir plantation. We monitored the effects of pruning on the stem and soil CO2 efflux, stem radial growth, xylem sap flow, and nonstructural carbohydrate (NSC) concentrations. Our results showed that pruning resulted in the significant reduction of stem CO2 efflux, particularly during the growing season. Despite the removal of the lower 50 % of the green crown length, we did not observe a pronounced reduction in soil CO2 efflux and its components. Moreover, pruning had only little effect on sap flow. No significant difference was observed in the NSC concentrations between treatments in the stem cores and fine roots. We speculated that the different responses of stem and soil CO2 efflux to pruning in the Chinese fir (sprouting species) plantation may have resulted from the different carbon allocations between aboveground and belowground tissues. However, further studies are required to confirm if our findings could be applied to other tree species or ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alcorn PJ, Bauhus J, Smith RGB, Thomas D, James R, Nicotra A (2008) Growth response following green crown pruning in plantation-grown Eucalyptus pilularis and Eucalyptus cloeziana. Can J For Res 38:770–781

    Article  Google Scholar 

  • Amateis RL, Burkhart HE (2011) Growth of young loblolly pine trees following pruning. Forest Ecol Manag 262:2338–2343

    Article  Google Scholar 

  • Aubrey DP, Teskey RO (2009) Root-derived CO2 efflux via xylem stream rivals soil CO2 efflux. New Phytol 184:35–40

    Article  CAS  PubMed  Google Scholar 

  • Aubrey DP, Mortazavi B, O’Brien JJ, McGee JD, Hendricks JJ, Kuehn KA, Teskey RO, Mitchell RJ (2012) Influence of repeated canopy scorching on soil CO2 efflux. Forest Ecol Manag 282:142–148

    Article  Google Scholar 

  • Bauer H, Plattner K, Volgger W (2000) Photosynthesis in Norway spruce seedlings infected by the needle rust Chrysomyxa rhododendri. Tree Physiol 20:211–216

    Article  CAS  PubMed  Google Scholar 

  • Bergmeyer HU, Bergmeyer J, Grassl M (1988) Methods of enzymatic analysis. VCH Publishers (UK) Ltd, Cambridge

    Google Scholar 

  • Bloemen J, Agneessens L, Meulebroek LV, Aubrey DP, McGuire MA, Teskey RO, Steppe K (2014) Stem girdling affects the quantity of CO2 transported in xylem as well as CO2 efflux from soil. New Phytol 201:897–907

    Article  CAS  PubMed  Google Scholar 

  • Bowman WP, Barbour MM, Turnbull MH, Tissue DT, Whitehead D, Griffin KL (2005) Sap flow rates and sapwood density are critical factors in within- and between-tree variation in CO2 efflux from stems of mature Dacrydium cupressinum trees. New Phytol 167:815–828

    Article  CAS  PubMed  Google Scholar 

  • Chesney P, Vasquez N (2007) Dynamics of non-structural carbohydrate reserves in pruned Erythrina poeppigiana and Gliricidia sepium trees. Agroforest Syst 69:89–105

    Article  Google Scholar 

  • Clinton BD, Maier CA, Ford CR, Mitchell RJ (2011) Transient changes in transpiration, and stem and soil CO2 efflux in longleaf pine (Pinus palustris Mill.) following fire-induced leaf area reduction. Trees 25:997–1007

    Article  CAS  Google Scholar 

  • Edwards NT, McLaughlin SB (1978) Temperature-independent diel variations of respiration rates in Quercus alba and Liriodendron tulipifera. Oikios 31:200–206

    Article  Google Scholar 

  • Edwards NT, Tschaplinski TJ, Norby RJ (2002) Stem respiration increases in CO2-enriched sweetgum trees. New Phytol 155:239–248

    Article  Google Scholar 

  • Ekblad A, Högberg P (2001) Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia 127:305–308

    Article  Google Scholar 

  • Frey B, Hagedorn F, Giudici F (2006) Effect of girdling on soil respiration and root composition in a sweet chestnut forest. Forest Ecol Manag 225:271–277

    Article  Google Scholar 

  • Gansert D, Burgdorf M (2005) Effects of xylem sap flow on carbon dioxide efflux from stems of birch (Betula pendula Roth). Flora 200:444–455

    Article  Google Scholar 

  • Granier A (1987) Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol 3:309–320

    Article  PubMed  Google Scholar 

  • Gruber A, Pirkebner D, Oberhuber W (2013) Seasonal dynamics of mobile carbohydrate pools in phloem and xylem of two alpine timberline conifers. Tree Physiol 33:1076–1083

    Article  CAS  PubMed  Google Scholar 

  • Hanson PJ, Gunderson CA (2009) Root carbon flux: measurements versus mechanisms. New Phytol 184:4–6

    Article  CAS  PubMed  Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146

    Article  CAS  Google Scholar 

  • Hoch G, Richter A, Körner C (2003) Non-structural carbon compounds in temperate forest trees. Plant, Cell Environ 26:1067–1081

    Article  CAS  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Lofvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792

    Article  PubMed  Google Scholar 

  • Högberg P, Högberg MN, Göttlicher SG, Betson NR, Keel SG, Metcalfe DB, Campbell C, Schindlbacher A, Hurry V, Lundmark T, Linder S, Näsholm T (2008) High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms. New Phytol 177:220–228

    PubMed  Google Scholar 

  • Högberg P, Bhupinderpal-Singh Löfvenius MO, Nordgren A (2009) Partitioning of soil respiration into its autotrophic and heterotrophic components by means of tree-girdling in old boreal spruce forest. Forest Ecol Manag 257:1764–1767

    Article  Google Scholar 

  • Huang L, Liu JY, Shao QQ, Xu XL (2012) Carbon sequestration by forestation across China: past, present, and future. Renew Sust Energ Rev 16:1291–1299

    Article  Google Scholar 

  • Jia ZB, Zhang JL, Wang X, Xu JD, Li ZP, Fu BL, Zhou GH, Zhang Y, Zhang SG, Zhang SD, Su ZY, Chen XF, Wang QJ, Zhang YX, Zhang M (2009) Forest resources report in China: the seventh national forest inventory. China Forestry Publishing House, Beijing

    Google Scholar 

  • Johnsen K, Maier C, Sanchez F, Anderson P, Butnor J, Waring R, Linder S (2007) Physiological girdling of pine trees via phloem chilling: proof of concept. Plant, Cell Environ 30:128–134

    Article  CAS  Google Scholar 

  • Kenzo T, Ichie T, Yoneda R, Tanaka-Oda A, Azani MA, Majid NM (2013) Ontogenetic changes in carbohydrate storage and sprouting ability in pioneer tree species in Peninsular Malaysia. Biotropica 45:427–433

    Article  Google Scholar 

  • Lynch DJ, Matamala R, Iversen CM, Norby RJ, Gonzalez-Meler MA (2013) Stored carbon partly fuels fine-root respiration but is not used for production of new fine roots. New Phytol 199:420–430

    Article  CAS  PubMed  Google Scholar 

  • Maier CA, Johnsen KH, Clinton BD, Ludovici KH (2010) Relationships between stem CO2 efflux, substrate supply, and growth in young loblolly pine trees. New Phytol 185:502–513

    Article  CAS  PubMed  Google Scholar 

  • Maunoury-Danger F, Fresneau C, Eglin T, Berveiller D, François C, Trouverie CL, Damesin C (2010) Impact of carbohydrate supply on stem growth, wood and respired CO2 δ13C: assessment by experimental girdling. Tree Physiol 30:818–830

    Article  CAS  PubMed  Google Scholar 

  • Maurin V, DesRochers A (2013) Physiological and growth responses to pruning season and intensity of hybrid poplar. Forest Ecol Manag 304:399–406

    Article  Google Scholar 

  • McCleary BV, Gibson TS, Mugford DC (1997) Measurement of total starch in cereal products by amyloglucosidase–alpha-amylase method: collaborative study. J AOAC Int 80:571–579

    CAS  Google Scholar 

  • McGuire MA, Teskey RO (2004) Estimating stem respiration in trees by a mass balance approach that accounts for internal and external fluxes of CO2. Tree Physiol 24:571–578

    Article  CAS  PubMed  Google Scholar 

  • McGuire MA, Cerasoli S, Teskey RO (2007) CO2 fluxes and respiration of branch segments of sycamore (Platanus occidentalis L.) examined at different sap velocities, branch diameters, and temperatures. J Exp Bot 58:2159–2168

    Article  CAS  PubMed  Google Scholar 

  • Moore DJP, Gonzalez-Meler MA, Taneva L, Pippen JS, Kim HS, Delucia EH (2008) The effect of carbon dioxide enrichment on apparent stem respiration from Pinus taeda L. is confounded by high levels of soil carbon dioxide. Oecologia 158:1–10

    Article  PubMed  Google Scholar 

  • Moyano FE, Kutsch WL, Rebmann C (2008) Soil respiration fluxes in relation to photosynthetic activity in broad-leaf and needle-leaf forest stands. Agr Forest Meteorol 148:135–143

    Article  Google Scholar 

  • Myers JA, Kitajima K (2007) Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest. J Ecol 95:383–395

    Article  CAS  Google Scholar 

  • Ogawa K (2006) Stem respiration is influenced by pruning and girdling in Pinus sylvestris. Scand J Forest Res 21:293–298

    Article  Google Scholar 

  • Pinkard EA, Beadle CL (1998) effect of green pruning on growth and stem shape of Eucalyptus nitens (Deane and Maiden) Maiden. New For 15:107–126

    Article  Google Scholar 

  • Plain C, Gerant D, Maillard P, Dannoura M, Dong YW, Zeller B, Priault P, Parent F, Epron D (2009) Tracing of recently assimilated carbon in respiration at high temporal resolution in the field with a tuneable diode laser absorption spectrometer after in situ 13CO2 pulse labelling of 20-year-old beech trees. Tree Physiol 29:1433–1445

    Article  CAS  PubMed  Google Scholar 

  • Reich PB, Walters MB, Krause SC, Vanderdlien DW, Raffa KF, Tabone T (1993) Growth, nutrition, and gas exchange of Pinus resinosa following artificial defoliation. Trees 7:67–77

    Article  Google Scholar 

  • Rodríguez-Calcerrada J, López R, Salomón R, Gordaliza GG, Valbuena-Carabaña M, Oleksyn J, Gil L (2014) Stem CO2 efflux in six co-occurring tree species: underlying factors and ecological implications. Plant, Cell Environ. doi:10.1111/pce.12463

    Google Scholar 

  • Ruehr NK, Buchmann N (2010) Soil respiration fluxes in a temperate mixed forest: seasonality and temperature sensitivities differ among microbial and root–rhizosphere respiration. Tree Physiol 30:165–176

    Article  CAS  PubMed  Google Scholar 

  • Schwilk DW, Ackerly DD (2005) Is there a cost to resprouting? Seedling growth rate and drought tolerance in sprouting and nonsprouing ceanothus (rhannaceae). Am J Bot 92(3):404–410

    Article  PubMed  Google Scholar 

  • Teskey RO, McGuire MA (2002) Carbon dioxide transport in xylem causes errors in estimation of rates of respiration in stems and branches of trees. Plant, Cell Environ 25:1571–1577

    Article  Google Scholar 

  • Teskey RO, McGuire MA (2005) CO2 transported in xylem sap affects CO2 efflux from Liquidambar styraciflua and Platanus occidentalis stems, and contributes to observed wound respiration phenomena. Trees 19:357–362

    Article  Google Scholar 

  • Teskey RO, McGuire MA (2007) Measurement of stem respiration of sycamore (Platanus occidentalis L.) trees involves internal and external fluxes of CO2 and possible transport of CO2 from roots. Plant, Cell Environ 30:570–579

    Article  CAS  Google Scholar 

  • Teskey RO, Saveyn A, Steppe K, McGuire MA (2008) Origin, fate and significance of CO2 in tree stems. New Phytol 177:17–32

    CAS  PubMed  Google Scholar 

  • Thornley JHM, Cannell MGR (2000) Modelling the components of plant respiration: representation and realism. Ann Bot-London 85:55–67

    Article  CAS  Google Scholar 

  • Turnbull T, Adams MA, Warren CR (2007) Increased photosynthesis following partial defoliation of field-grown Eucalyptus globulus seedlings is not caused by increased leaf nitrogen. Tree Physiol 27:1481–1492

    Article  CAS  PubMed  Google Scholar 

  • Wang SY, Lin CJ, Chiu CM, Chen JH, Yung TH (2005) Dynamic modulus of elasticity and bending properties of young Taiwania trees grown with different thinning and pruning treatments. J Wood Sci 51:1–6

    Article  Google Scholar 

  • Wang YD, Wang HM, Wang ZL, Zhang WJ, Guo CC, Wen XF, Liu YF (2012) Optimizing manual sampling schedule for estimating annual soil CO2 efflux in a young exotic pine plantation in subtropical China. Eur J Soil Biol 52:41–47

    Article  CAS  Google Scholar 

  • Wertin TM, Teskey RO (2008) Close coupling of whole-plant respiration to net photosynthesis and carbohydrates. Tree Physiol 28:1831–1840

    Article  CAS  PubMed  Google Scholar 

  • Xu M, DeBiase TA, Qi Y (2000) A simple technique to measure stem respiration using a horizontally oriented soil chamber. Can J Forest Res 30:1555–1560

    Article  Google Scholar 

  • Yang QP, Xu M, Chi YG, Zheng YP, Shen RC, Li PX, Dai HT (2012a) Temporal and spatial variations of stem CO2 efflux of three species in subtropical China. J Plant Ecol 5:229–237

    Article  Google Scholar 

  • Yang JY, Teskey RO, Wang CK (2012b) Stem CO2 efflux of ten species in temperate forests in Northeastern China. Trees 26:1225–1235

    Article  CAS  Google Scholar 

  • Zha TS, Kellomäki S, Wang KY, Ryyppö A, Niinistö S (2004) Seasonal and annual stem respiration of Scots pine trees under boreal conditions. Ann Bot 94:889–896

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhu LW, Zhao P, Cai XA, Zeng XP, Ni GY, Zhang JY, Zou LL, Mei TT, Yu MH (2012) Effects of sap velocity on the daytime increase of stem CO2 efflux from stems of Schima superba trees. Trees 26:535–542

    Article  Google Scholar 

Download references

Author contribution statement

Qingpeng Yang participated in the experimental design, data analyses, and writing of the paper. Lanlan Liu carried out most of the experiments and participated in data analyses. Weidong Zhang participated in statistical analyses, discussion, and writing of the paper. Ming Xu participated in the experimental design and revised the manuscript. Silong Wang designed and directed the study.

Acknowledgments

This research was funded by the National Basic Research Program of China (973 Program, Grant no. 2012CB416905), the National Natural Science Foundation of China (Grant nos. 31200302 and 41030533), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05050205). We thank two anonymous reviewers for their constructive comments and suggestions. We also thank Bing Fan, Xiuyong Zhang, Zhengqi Shen, Xiaojun Yu, and Ke Huang for their assistance in the laboratory and in field experiments.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingpeng Yang or Silong Wang.

Additional information

Communicated by R. Matyssek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Liu, L., Zhang, W. et al. Different responses of stem and soil CO2 efflux to pruning in a Chinese fir (Cunninghamia lanceolata) plantation. Trees 29, 1207–1218 (2015). https://doi.org/10.1007/s00468-015-1201-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1201-8

Keywords

Navigation