Skip to main content
Log in

A new multi-layer approach for progressive damage simulation in composite laminates based on isogeometric analysis and Kirchhoff–Love shells. Part II: impact modeling

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this two-part paper we introduce a new formulation for modeling progressive damage in laminated composite structures. We adopt a multi-layer modeling approach, based on isogeometric analysis, where each ply or lamina is represented by a spline surface, and modeled as a Kirchhoff–Love thin shell. Continuum damage mechanics is used to model intralaminar damage, and a new zero-thickness cohesive-interface formulation is introduced to model delamination as well as permitting laminate-level transverse shear compliance. In Part I of this series we focus on the presentation of the modeling framework, validation of the framework using standard Mode I and Mode II delamination tests, and assessment of its suitability for modeling thick laminates. In Part II of this series we focus on the application of the proposed framework to modeling and simulation of damage in composite laminates resulting from impact. The proposed approach has significant accuracy and efficiency advantages over existing methods for modeling impact damage. These stem from the use of IGA-based Kirchhoff–Love shells to represent the individual plies of the composite laminate, while the compliant cohesive interfaces enable transverse shear deformation of the laminate. Kirchhoff–Love shells give a faithful representation of the ply deformation behavior, and, unlike solids or traditional shear-deformable shells, do not suffer from transverse-shear locking in the limit of vanishing thickness. This, in combination with higher-order accurate and smooth representation of the shell midsurface displacement field, allows us to adopt relatively coarse in-plane discretizations without sacrificing solution accuracy. Furthermore, the thin-shell formulation employed does not use rotational degrees of freedom, which gives additional efficiency benefits relative to more standard shell formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Choi H, Downs R, Chang F-K (1991) A new approach toward understanding damage mechanisms and mechanics of laminated composites due to low-velocity impact: part I-experiments. J Compos Mater 25:992–1011

    Article  Google Scholar 

  2. Richardson M, Wisheart M (1996) Review of low-velocity impact properties of composite materials. Compos A 27A:1123–1131

    Article  Google Scholar 

  3. Choi H, Chang F-K (1992) A model for predicting damage in graphite/epoxy laminated composites resulting from low-velocity point impact. J Compos Mater 26:2134–2169

    Article  Google Scholar 

  4. Allix O, Ladevéze P (1992) Interlaminar interface modelling for the prediction of delamination. Compos Struct 22:235–242

    Article  Google Scholar 

  5. Allix O, Ladevéze P, Corigliano A (1995) Damage analysis of interlaminar fracture specimens. Compos Struct 31:61–74

    Article  Google Scholar 

  6. Mi Y, Crisfield A, Davies G (1998) Progressive delamination using interface elements. J Compos Mater 32:1246–1272

    Article  Google Scholar 

  7. Dàvila C, Camanho P, Turon A (2007) Cohesive elements for shells. Technical report 214869. NASA Langley Research Center

  8. Camanho P, Dàvila C, de Moura F (2003) Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater 37:1415–1438

    Article  Google Scholar 

  9. Yang Q, Cox B (2005) Cohesive models for damage evolution in laminated composites. Int J Fract 133:107–137

    Article  MATH  Google Scholar 

  10. Turon A, Camanho P, Costa J, Dàvila C (2006) A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech Mater 38:1072–1089

    Article  Google Scholar 

  11. Turon A, Camanho P, Costa J, Renart J (2010) Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: definition of interlaminar strengths and elastic stiffness. Compos Struct 92:1857–1864

    Article  Google Scholar 

  12. Ladevéze P, Dantec EL (1992) Damage modelling of the elementary ply for laminated composites. Compos Sci Technol 43:257–267

    Article  Google Scholar 

  13. Matzenmiller A, Lubliner J, Taylor R (1995) A constitutive model for anisotropic damage in fiber-composites. Mech Mater 20:125–152

    Article  Google Scholar 

  14. Dàvila C, Camanho P (2003) Failure criteria for FRP laminates in plane stress. Technical report NASA/TM-2003-212663. Langley Research Center, Hampton

  15. Pinho S, Iannucci L, Robinson P (2006) Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking: part I: development. Compos A 37:63–73

    Article  Google Scholar 

  16. Pinho S, Iannucci L, Robinson P (2006) Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking: part II: FE implementation. Compos A 37:766–777

    Article  Google Scholar 

  17. Donadon M, Iannucci L, Falzon B, Hodgkinson J, de Almeida S (2008) A progressive failure model for composite laminates subjected to low velocity impact damage. Comput Struct 86:1232–1252

    Article  Google Scholar 

  18. Bouvet C, Rivallant S, Barrau J (2012) Low velocity impact modeling in composite laminates capturing permanent indentation. Compos Sci Technol 72:1977–1988

    Article  Google Scholar 

  19. Tan W, Falzon B, Chiu L, Price M (2015) Predicting low velocity impact damage and compression-after-impact (CAI) behaviour of composite laminates. Compos A 71:212–226

    Article  Google Scholar 

  20. Zhang Y, Zhu P, Lai X (2006) Finite element analysis of low-velocity impact damage in composite laminated plates. Mater Des 27:513–519

    Article  Google Scholar 

  21. Guan Z, Yang C (2002) Low-velocity impact and damage process of composite laminates. J Compos Mater 36:851–871

    Article  Google Scholar 

  22. Faggiani A, Falzon B (2010) Predicting low-velocity impact damage on a stiffened composite panel. Compos A 41:737–749

    Article  Google Scholar 

  23. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  24. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, London

    Book  MATH  Google Scholar 

  25. Kiendl J, Bletzinger K-U, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff–Love elements. Comput Methods Appl Mech Eng 198:3902–3914

    Article  MathSciNet  MATH  Google Scholar 

  26. Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199:2403–2416

    Article  MathSciNet  MATH  Google Scholar 

  27. Deng X, Korobenko A, Yan J, Bazilevs Y (2015) Isogeometric analysis of continuum damage in rotation-free composite shells. Comput Methods Appl Mech Eng 284:349–372

    Article  MathSciNet  Google Scholar 

  28. Hsu M-C, Wang C, Herrema AJ, Schillinger D, Ghoshal A, Bazilevs Y (2015) An interactive geometry modeling and parametric design platform for isogeometric analysis. Comput Math Appl 70:1481–1500

    Article  MathSciNet  Google Scholar 

  29. Hosseini S, Remmers J, Verhoosel C, de Borst R (2013) An isogeometric solid-like shell element for non-linear analysis. Int J Numer Meth Eng 95:238–256

    Article  MATH  Google Scholar 

  30. Hosseini S, Remmers J, Verhoosel C, de Borst R (2014) An isogeometric continuum shell element for non-linear analysis. Comput Methods Appl Mech Eng 271:1–22

    Article  MathSciNet  MATH  Google Scholar 

  31. Wriggers P (1995) Finite element algorithms for contact problems. Arch Comput Methods Eng 2:1–49

    Article  MathSciNet  Google Scholar 

  32. Temizer I, Wriggers P, Hughes T (2012) Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with nurbs. Comput Methods Appl Mech Eng 209:115–128

    Article  MathSciNet  MATH  Google Scholar 

  33. Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. Comput Methods Appl Mech Eng 284:1005–1053

    Article  MathSciNet  Google Scholar 

  34. Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41

    Article  MathSciNet  MATH  Google Scholar 

  35. Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J Appl Mech 60:371–75

    Article  MathSciNet  MATH  Google Scholar 

  36. ABAQUS (2016) User’s manual. Providence, p 2016

  37. Rivallant S, Bouvet C, Hongkarnjanakul N (2013) Failure analysis of CFRP laminates subjected to compression after impact: fe simulation using discrete interface elements. Compos A 55:83–93

    Article  Google Scholar 

  38. Hongkarnjanakul N, Bouvet C, Rivallant S (2013) Validation of low velocity impact modelling on different stacking sequences of CFRP laminates and influence of fibre failure. Compos Struct 106:549–559

    Article  Google Scholar 

  39. Bažant Z, Oh B (1983) Crack band theory for fracture of concrete. Mater Struct 16:155–177

    Google Scholar 

  40. Turon A, Dàvila C, Camanho P, Costa J (2007) An engineering solution for mesh size effects in the simulation of selamination using cohesive zone models. Eng Fract Mech 74:1665–1682

    Article  Google Scholar 

  41. Falk M, Needleman A, Rice J (2001) A critical evaluation of cohesive zone models of dynamic fracture. J Phys IV 11:43–50

    Google Scholar 

  42. Yang Q, Cox B (2006) Fracture length scales in human cortical bone: the necessity of nonlinear fracture models. Biomaterials 27:2095–2113

    Article  Google Scholar 

  43. Harper P, Hallett S (2008) Cohesive zone length in numerical simulations of composite delamination. Eng Fract Mech 75:4774–4792

    Article  Google Scholar 

  44. Xie J, Waas A, Rassaian M (2016) Estimating the process zone length of fracture tests used in characterizing composites. Int J Solids Struct 100–101:111–126

    Article  Google Scholar 

  45. Rose C, Dàvila C, Leone F Jr (2013) Analysis methods for progressive damage of composite structures. Technical Report 218024. NASA Langley Research Center

  46. Leone F Jr (2015) Deformation gradient tensor decomposition for representing matrix cracks in fiber-reinforced materials. Compos A 76:334–341

    Article  Google Scholar 

  47. Benson D, Bazilevs Y, Hsu M-C, Hughes T (2010) Isogeometric shell analysis: the Reissner–Mindlin shell. Comput Methods Appl Mech Eng 199:276–289

    Article  MathSciNet  MATH  Google Scholar 

  48. Benson D, Bazilevs Y, Hsu M-C, Hughes T (2011) A large deformation, rotation-free, isogeometric shell. Comput Methods Appl Mech Eng 200:1367–1378

    Article  MathSciNet  MATH  Google Scholar 

  49. Pijaudier-Cabot G, Bazant ZP (1987) Nonlocal damage theory. J Eng Mech 113:1512–1533

    Article  MATH  Google Scholar 

  50. Bazant ZP, Pijaudier-Cabot G (1988) Nonlocal continuum damage, localization instability and convergence. J Appl Mech 55:287–293

    Article  MATH  Google Scholar 

  51. de Borst R, Pamin J, Peerlings RHJ, Sluys LJ (1995) Strain-based transient-gradient damage model for failure analyses. Comput Mech 17:130–141

    Article  MATH  Google Scholar 

  52. Geers MGD, de Borst R, Brekelmans WAM, Peerlings RHJ (1998) Strain-based transient-gradient damage model for failure analyses. Comput Methods Appl Mech Eng 160:133–153

    Article  MATH  Google Scholar 

  53. Hosseini S, Remmers JJC, de Borst R (2014) The incorporation of gradient damage models in shell elements. Int J Numer Meth Eng 98:391–398

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by NASA Advanced Composites Project No. 15-ACP1-0021. We thank F. Leone, C, Rose, and C. Davila from NASA Langley Research Center for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Bazilevs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pigazzini, M.S., Bazilevs, Y., Ellison, A. et al. A new multi-layer approach for progressive damage simulation in composite laminates based on isogeometric analysis and Kirchhoff–Love shells. Part II: impact modeling. Comput Mech 62, 587–601 (2018). https://doi.org/10.1007/s00466-017-1514-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1514-0

Keywords

Navigation