Skip to main content
Log in

A new fast direct solver for the boundary element method

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A new fast direct linear equation solver for the boundary element method (BEM) is presented in this paper. The idea of the new fast direct solver stems from the concept of the hierarchical off-diagonal low-rank matrix. The hierarchical off-diagonal low-rank matrix can be decomposed into the multiplication of several diagonal block matrices. The inverse of the hierarchical off-diagonal low-rank matrix can be calculated efficiently with the Sherman–Morrison–Woodbury formula. In this paper, a more general and efficient approach to approximate the coefficient matrix of the BEM with the hierarchical off-diagonal low-rank matrix is proposed. Compared to the current fast direct solver based on the hierarchical off-diagonal low-rank matrix, the proposed method is suitable for solving general 3-D boundary element models. Several numerical examples of 3-D potential problems with the total number of unknowns up to above 200,000 are presented. The results show that the new fast direct solver can be applied to solve large 3-D BEM models accurately and with better efficiency compared with the conventional BEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Brebbia CA, Dominguez J (1994) Boundary elements: an introductory course. WIT Press, Ashurst

    MATH  Google Scholar 

  2. Banerjee P, Butterfield R (1994) The boundary element methods in engineering. McGraw-Hill, New York

    MATH  Google Scholar 

  3. Bonnet M (1999) Boundary integral equation methods for solids and fluids. Meccanica 34(4):301–302. doi:10.1023/a:1004795120236

    Article  Google Scholar 

  4. Aliabadi M (2002) The boundary element method: applications in solids and structures, vol 2. Wiley, Chicester

    MATH  Google Scholar 

  5. Mukherjee S, Mukherjee YX (2005) Boundary methods: elements, contours, and nodes. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  6. Liu YJ (2009) Fast multipole boundary element method—theory and applications in engineering. Cambridge University Press, Cambridge

    Book  Google Scholar 

  7. Rokhlin V (1985) Rapid solution of integral-equations of classical potential-theory. J Comput Phys 60(2):187–207

    Article  MATH  MathSciNet  Google Scholar 

  8. Greengard L, Rokhlin V (1987) A fast algorithm for particle simulations. J Comput Phys 73(2):325–348

    Article  MATH  MathSciNet  Google Scholar 

  9. Shen L, Liu YJ (2007) An adaptive fast multipole boundary element method for three-dimensional potential problems. Comput Mech 39(6):681–691

    Article  MATH  Google Scholar 

  10. Liu YJ, Shen L (2007) A dual BIE approach for large-scale modeling of 3-D electrostatic problems with the fast multipole boundary element method. Int J Numer Meth Eng 71(7):837–855. doi:10.1002/nme.2000

    Article  MATH  Google Scholar 

  11. Bapat MS, Liu YJ (2010) A new adaptive algorithm for the fast multipole boundary element method. Comput Model Eng Sci 58(2):161–184

    Google Scholar 

  12. Liu YJ, Nishimura N, Otani Y, Takahashi T, Chen XL, Munakata H (2005) A fast boundary element method for the analysis of fiber-reinforced composites based on a rigid-inclusion model. J Appl Mech 72(1):115–128. doi:10.1115/1.1825436

    Article  MATH  Google Scholar 

  13. Liu YJ (2006) A new fast multipole boundary element method for solving large-scale two-dimensional elastostatic problems. Int J Numer Meth Eng 65(6):863–881. doi:10.1002/nme.1474

    Article  MATH  MathSciNet  Google Scholar 

  14. Liu YJ (2008) A fast multipole boundary element method for 2D multi-domain elastostatic problems based on a dual BIE formulation. Comput Mech 42(5):761–773. doi:10.1007/s00466-008-0274-2

    Article  MATH  MathSciNet  Google Scholar 

  15. Shen L, Liu YJ (2006) An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the burton-miller formulation. Comput Mech 40(3):461–472. doi:10.1007/s00466-006-0121-2

    Article  MATH  Google Scholar 

  16. Bapat MS, Shen L, Liu YJ (2009) Adaptive fast multipole boundary element method for three-dimensional half-space acoustic wave problems. Eng Anal Boundary Elem 33(8–9):1113–1123. doi:10.1016/j.enganabound.2009.04.005

    Article  MATH  MathSciNet  Google Scholar 

  17. Wu HJ, Liu YJ, Jiang WK (2012) Analytical integration of the moments in the diagonal form fast multipole boundary element method for 3D acoustic wave problems. Eng Anal Boundary Elem 36(2):248–254. doi:10.1016/j.enganabound.2011.08.004

    Article  MATH  MathSciNet  Google Scholar 

  18. Song JM, Chew WC (1995) Multilevel fast-multipole algorithm for solving combined field integral-equations of electromagnetic scattering. Microw Opt Technol Lett 10(1):14–19

    Article  Google Scholar 

  19. Song JM, Lu CC, Chew WC (1997) Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects. IEEE Trans Antennas Propag 45(10):1488–1493

    Article  Google Scholar 

  20. Darve E, Have P (2003) Fast multipole method for low-frequency electromagnetic scattering. In: Proceedings of the computational fluid and solid mechanics 2003, vols 1 and 2, pp 1299–1302

  21. Tsuji P, Ying L (2011) A fast directional algorithm for high-frequency electromagnetic scattering. J Comput Phys 230(14):5471–5487. doi:10.1016/j.jcp.2011.02.013

    Article  MATH  MathSciNet  Google Scholar 

  22. Nishimura N (2002) Fast multipole accelerated boundary integral equation methods. Appl Mech Rev 55(4):299. doi:10.1115/1.1482087

    Article  Google Scholar 

  23. Liu YJ, Nishimura N (2006) The fast multipole boundary element method for potential problems: a tutorial. Eng Anal Boundary Elem 30(5):371–381. doi:10.1016/j.enganabound.2005.11.006

    Article  MATH  Google Scholar 

  24. Liu YJ, Mukherjee S, Nishimura N, Schanz M, Ye W, Sutradhar A, Pan E, Dumont NA, Frangi A, Saez A (2011) Recent advances and emerging applications of the boundary element method. Appl Mech Rev 64(3):1–38. doi:10.1115/1.4005491

    Google Scholar 

  25. Hackbusch W (1999) A sparse matrix arithmetic based on \({\cal{H}}\)-matrices. Part I: introduction to \({\cal{H}}\)-matrices. Computing 62(2):89–108. doi:10.1007/s006070050015

    Article  MATH  MathSciNet  Google Scholar 

  26. Hackbusch W, Khoromskij BN (2000) A sparse \({\cal{H}}\)-matrix arithmetic. Computing 64(1):21–47

    MATH  MathSciNet  Google Scholar 

  27. Hackbusch W, Börm S (2002) Data-sparse approximation by adaptive \({\cal{H}}^{2}\)-matrices. Computing 69(1):1–35. doi:10.1007/s00607-002-1450-4

    Article  MATH  MathSciNet  Google Scholar 

  28. Börm S, Grasedyck L, Hackbusch W (2003) Introduction to hierarchical matrices with applications. Eng Anal Boundary Elem 27(5):405–422

    Article  MATH  Google Scholar 

  29. Ambikasaran S (2013) Fast algorithms for dense numerical linear algebra and applications. Stanford University, Stanford

    Google Scholar 

  30. Bebendorf M (2000) Approximation of boundary element matrices. Numer Math 86:565–589

    Article  MATH  MathSciNet  Google Scholar 

  31. Bebendorf M, Rjasanow S (2003) Adaptive low-rank approximation of collocation matrices. Computing 70:1–24

    Article  MATH  MathSciNet  Google Scholar 

  32. Bebendorf M, Grzhibovskis R (2006) Accelerating Galerkin BEM for linear elasticity using adaptive cross approximation. Math Methods Appl Sci 29(14):1721–1747. doi:10.1002/mma.759

    Article  MATH  MathSciNet  Google Scholar 

  33. Smajic J, Andjelic Z, Bebendorf M (2007) Fast BEM for eddy-current problems using h-matrices and adaptive cross approximation. IEEE Trans Magn 43(4):1269–1272. doi:10.1109/tmag.2006.890971

    Article  Google Scholar 

  34. Maaskant R, Mittra R, Tijhuis A (2008) Fast analysis of large antenna arrays using the characteristic basis function method and the adaptive cross approximation algorithm. IEEE Trans Antennas Propag 56(11):3440–3451. doi:10.1109/tap.2008.2005471

    Article  Google Scholar 

  35. Maerten F (2010) Adaptive cross-approximation applied to the solution of system of equations and post-processing for 3D elastostatic problems using boundary element method. Eng Anal Boundary Elem 34:483–491

    Article  MATH  Google Scholar 

  36. Saad Y (2003) Iterative methods for sparse linear system, 2nd edn. The Society for Industrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  37. Chen K (2005) Matrix preconditioning techniques and applications. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  38. Martinsson PG, Rokhlin V (2005) A fast direct solver for boundary integral equations in two dimensions. J Comput Phys 205(1):1–23. doi:10.1016/j.jcp.2004.10.033

    Article  MATH  MathSciNet  Google Scholar 

  39. Corona E, Martinsson P-G, Zorin D (2015) An o(N) direct solver for integral equations on the plane. Appl Comput Harm Anal 38(2):284–317. doi:10.1016/j.acha.2014.04.002

    Article  MATH  MathSciNet  Google Scholar 

  40. Greengard L, Gueyffier D, Martinsson P-G, Rokhlin V (2009) Fast direct solvers for integral equations in complex three-dimensional domains. Acta Numer 18:243–275

    Article  MATH  MathSciNet  Google Scholar 

  41. Ho KL, Greengard L (2012) A fast direct solver for structured linear systems by recursive skeletonization. SIAM J Sci Comput 34(5):A2507–A2532

    Article  MATH  MathSciNet  Google Scholar 

  42. Lai J, Ambikasaran S, Greengard LF (2014) A fast direct solver for high frequency scattering from a large cavity in two dimensions. SIAM J Sci Comput 36(6):B887–B903

    Article  MATH  MathSciNet  Google Scholar 

  43. Ambikasaran S, Darve E (2013) An \(\text{ O }(N\text{ log }N)\) fast direct solver for partial hierarchically semi-separable matrices. J Sci Comput 57(3):477–501. doi:10.1007/s10915-013-9714-z

    Article  MATH  MathSciNet  Google Scholar 

  44. Coulier P, Pouransari H, Darve E (2015) The inverse fast multipole method: using a fast approximate direct solver as a preconditioner for dense linear systems. arXiv preprint arXiv:1508.01835

  45. Sherman J, Morrison WJ (1950) Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann Math Stat 21(1):124–127

    Article  MATH  MathSciNet  Google Scholar 

  46. Woodbury MA (1950) Inverting modified matrices. https://en.wikipedia.org/wiki/Woodbury_matrix_identity

  47. Woolfe F, Liberty E, Rokhlin V, Tygert M (2008) A fast randomized algorithm for the approximation of matrices. Appl Comput Harmon Anal 25(3):335–366. doi:10.1016/j.acha.2007.12.002

    Article  MATH  MathSciNet  Google Scholar 

  48. Liberty E, Woolfe F, Martinsson PG, Rokhlin V, Tygert M (2007) Randomized algorithms for the low-rank approximation of matrices. Proc Nat Acad Sci USA 104(51):20167–20172. doi:10.1073/pnas.0709640104

    Article  MATH  MathSciNet  Google Scholar 

  49. Martinsson P-G, Rokhlin V, Tygert M (2011) A randomized algorithm for the decomposition of matrices. Appl Comput Harmon Anal 30(1):47–68. doi:10.1016/j.acha.2010.02.003

    Article  MATH  MathSciNet  Google Scholar 

  50. Halko N, Martinsson PG, Tropp JA (2011) Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev 53(2):217–288. doi:10.1137/090771806

    Article  MATH  MathSciNet  Google Scholar 

  51. Nabors K, White J (1991) Fastcap: a multipole accelerated 3-D capacitance extraction program. IEEE Trans Comput Aided Des Integr Circuits Syst 10(11):1447–1459

    Article  Google Scholar 

  52. Phillips JR, White JK (1997) A precorrected-FFT method for electrostatic analysis of complicated 3-d structures. IEEE Trans Comput Aided Des Integr Circuits Syst 16(10):1059–1072

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. J. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Liu, Y.J. A new fast direct solver for the boundary element method. Comput Mech 60, 379–392 (2017). https://doi.org/10.1007/s00466-017-1407-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1407-2

Keywords

Navigation