Skip to main content

Fast Large-Scale Boundary Element Algorithms

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering (HPCSE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12456))

Abstract

Boundary element methods (BEM) reduce a partial differential equation in a domain to an integral equation on the domain’s boundary. They are particularly attractive for solving problems on unbounded domains, but handling the dense matrices corresponding to the integral operators requires efficient algorithms.

This article describes two approaches that allow us to solve boundary element equations on surface meshes consisting of several millions of triangles while preserving the optimal convergence rates of the Galerkin discretization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bebendorf, M.: Approximation of boundary element matrices. Numer. Math. 86(4), 565–589 (2000)

    Article  MathSciNet  Google Scholar 

  2. Bebendorf, M.: Hierarchical LU decomposition based preconditioners for BEM. Computing 74, 225–247 (2005)

    Article  MathSciNet  Google Scholar 

  3. Bebendorf, M., Kuske, C., Venn, R.: Wideband nested cross approximation for Helmholtz problems. Numer. Math. 130(1), 1–34 (2014). https://doi.org/10.1007/s00211-014-0656-7

    Article  MathSciNet  Google Scholar 

  4. Bebendorf, M., Rjasanow, S.: Adaptive low-rank approximation of collocation matrices. Computing 70(1), 1–24 (2003)

    Article  MathSciNet  Google Scholar 

  5. Börm, S.: Construction of data-sparse \({\cal{H}}^2\)-matrices by hierarchical compression. SIAM J. Sci. Comp. 31(3), 1820–1839 (2009)

    Article  MathSciNet  Google Scholar 

  6. Börm, S.: Efficient Numerical Methods for Non-local Operators: \({\cal{H}}^2\)-Matrix Compression, Algorithms and Analysis, EMS Tracts in Mathematics, vol. 14, EMS (2010)

    Google Scholar 

  7. Börm, S., Christophersen, S.: Approximation of integral operators by Green quadrature and nested cross approximation. Numer. Math. 133(3), 409–442 (2015). https://doi.org/10.1007/s00211-015-0757-y

    Article  MathSciNet  Google Scholar 

  8. Börm, S., Grasedyck, L.: Low-rank approximation of integral operators by interpolation. Computing 72, 325–332 (2004)

    Article  MathSciNet  Google Scholar 

  9. Börm, S., Grasedyck, L.: Hybrid cross approximation of integral operators. Numer. Math. 101, 221–249 (2005)

    Article  MathSciNet  Google Scholar 

  10. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods for elliptic operator equations – convergence rates. Math. Comp. 70, 27–75 (2001)

    Article  MathSciNet  Google Scholar 

  11. Dahmen, W., Schneider, R.: Wavelets on manifolds I: construction and domain decomposition. SIAM J. Math. Anal. 31, 184–230 (1999)

    Article  MathSciNet  Google Scholar 

  12. Erichsen, S., Sauter, S.A.: Efficient automatic quadrature in 3-d Galerkin BEM. Comput. Meth. Appl. Mech. Eng. 157, 215–224 (1998)

    Article  MathSciNet  Google Scholar 

  13. Giebermann, K.: Multilevel approximation of boundary integral operators. Computing 67, 183–207 (2001)

    Article  MathSciNet  Google Scholar 

  14. Grasedyck, L.: Adaptive recompression of \({\cal{H}}\)-matrices for BEM. Computing 74(3), 205–223 (2004)

    Article  MathSciNet  Google Scholar 

  15. Grasedyck, L., Hackbusch, W.: Construction and arithmetics of \({\cal{H}}\)-matrices. Computing 70, 295–334 (2003)

    Article  MathSciNet  Google Scholar 

  16. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comp. Phys. 73, 325–348 (1987)

    Article  MathSciNet  Google Scholar 

  17. Greengard, L., Rokhlin, V.: A new version of the fast multipole method for the Laplace equation in three dimensions. In: Acta Numerica 1997, pp. 229–269. Cambridge University Press (1997)

    Google Scholar 

  18. Hackbusch, W.: Regularity. Elliptic Differential Equations. SSCM, vol. 18, pp. 263–310. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54961-2_9

    Chapter  Google Scholar 

  19. Hackbusch, W.: A sparse matrix arithmetic based on \(\cal{H}\)-matrices. Part I: introduction to \(\cal{H}\)-matrices. Computing 62(2), 89–108 (1999)

    Article  MathSciNet  Google Scholar 

  20. Hackbusch, W.: Tensor Spaces. Hierarchical Matrices: Algorithms and Analysis. SSCM, vol. 49, pp. 379–394. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47324-5_16

    Chapter  Google Scholar 

  21. Hackbusch, W., Khoromskij, B.N., Sauter, S.A.: On \(\cal{H}^2\)-matrices. In: Bungartz, H., Hoppe, R., Zenger, C. (eds.) Lectures on Applied Mathematics, pp. 9–29. Springer-Verlag, Berlin (2000). https://doi.org/10.1007/978-3-642-59709-1_2

    Chapter  Google Scholar 

  22. Harbrecht, H., Schneider, R.: Wavelet Galerkin schemes for boundary integral equations - implementation and quadrature. SIAM J. Sci. Comput. 27, 1347–1370 (2006)

    Article  MathSciNet  Google Scholar 

  23. Langer, U., Pusch, D., Reitzinger, S.: Efficient preconditioners for boundary element matrices based on grey-box algebraic multigrid methods. Int. J. Numer. Meth. Eng. 58(13), 1937–1953 (2003)

    Article  MathSciNet  Google Scholar 

  24. von Petersdorff, T., Schwab, C.: Fully discretized multiscale Galerkin BEM. In: Dahmen, W., Kurdila, A., Oswald, P. (eds.) Multiscale Wavelet Methods for PDEs, pp. 287–346. Academic Press, San Diego (1997)

    Google Scholar 

  25. Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J. Comp. Phys. 60, 187–207 (1985)

    Article  MathSciNet  Google Scholar 

  26. Sauter, S.A.: Cubature techniques for 3-D Galerkin BEM. In: Hackbusch, W., Wittum, G. (eds.) Boundary Elements: Implementation and Analysis of Advanced Algorithms. Notes on Numerical Fluid Mechanics (NNFM), vol. 50, pp. 29–44. Vieweg-Verlag, Berlin (1996). https://doi.org/10.1007/978-3-322-89941-5_2

    Chapter  Google Scholar 

  27. Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, Cham (2011)

    Book  Google Scholar 

  28. Steinbach, O., Wendland, W.L.: The construction of some efficient preconditioners in the boundary element method. Adv. Comp. Math. 9, 191–216 (1998)

    Article  MathSciNet  Google Scholar 

  29. Tausch, J.: A variable order wavelet method for the sparse representation of layer potentials in the non-standard form. J. Numer. Math. 12(3), 233–254 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Börm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Börm, S. (2021). Fast Large-Scale Boundary Element Algorithms. In: Kozubek, T., Arbenz, P., Jaroš, J., Říha, L., Šístek, J., Tichý, P. (eds) High Performance Computing in Science and Engineering. HPCSE 2019. Lecture Notes in Computer Science(), vol 12456. Springer, Cham. https://doi.org/10.1007/978-3-030-67077-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67077-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67076-4

  • Online ISBN: 978-3-030-67077-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics