Skip to main content
Log in

New physical characterization of the Fontana Lapilli basaltic Plinian eruption, Nicaragua

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The Fontana Lapilli deposit was erupted in the late Pleistocene from a vent, or multiple vents, located near Masaya volcano (Nicaragua) and is the product of one of the largest basaltic Plinian eruptions studied so far. This eruption evolved from an initial sequence of fluctuating fountain-like events and moderately explosive pulses to a sustained Plinian episode depositing fall beds of highly vesicular basaltic-andesite scoria (SiO2 > 53 wt%). Samples show unimodal grain size distribution and a moderate sorting that are uniform in time. The juvenile component predominates (> 96 wt%) and consists of vesicular clasts with both sub-angular and fluidal, elongated shapes. We obtain a maximum plume height of 32 km and an associated mass eruption rate of 1.4 × 108 kg s−1 for the Plinian phase. Estimates of erupted volume are strongly sensitive to the technique used for the calculation and to the distribution of field data. Our best estimate for the erupted volume of the majority of the climactic Plinian phase is between 2.9 and 3.8 km3 and was obtained by applying a power-law fitting technique with different integration limits. The estimated eruption duration varies between 4 and 6 h. Marine-core data confirm that the tephra thinning is better fitted by a power-law than by an exponential trend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bice DC (1980) Tephra stratigraphy and physical aspects of recent volcanism near Managua, Nicaragua. PhD thesis, Univerisity of California, Berkeley, p 422

  • Bice DC (1985) Quaternary volcanic stratigraphy of Managua, Nicaragua: correlation and source assignment for multiple overlapping Plinian deposits. Geol Soc Amer Bull 96:553–566

    Article  Google Scholar 

  • Bonadonna C (2006) Probabilistic modelling of tephra dispersion. In: Mader HM, Coles SG, Connor CB, Connor LJ (eds) Statistics in volcanology. The Geological Society, London, pp 243–259

    Google Scholar 

  • Bonadonna C, Ernst GGJ, Sparks RSJ (1998) Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number. J Volcanol Geotherm Res 81:173–187

    Article  Google Scholar 

  • Bonadonna C, Houghton BF (2005) Total grainsize distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456

    Article  Google Scholar 

  • Carey SN (1997) Influence of convective sedimentation on the formation of widespread tephra fall layers in the deep sea. Geology 25:839–842

    Article  Google Scholar 

  • Carey SN, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125

    Article  Google Scholar 

  • Carey R, Houghton BF, Sable JE, Wilson CJN (2007) Contrasting grain size and componentry in complex proximal deposits of the 1886 Tarawera basaltic Plinian eruption. Bull Volcanol 69:903–926

    Article  Google Scholar 

  • Chester DK, Dibben CJL, Duncan AM (2002) Volcanic hazard assessment in western Europe. J Volcanol Geotherm Res 115:411–435

    Article  Google Scholar 

  • Cioni R, Marianelli P, Santacroce R, Sbrana A (1999) Plinian and subplinian eruptions. In: Sigurdsson H, Houghton BF, McNutt S, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 477–494

    Google Scholar 

  • Cioni R, Longo A, Macedonio G, Santacroce R, Sbrana A, Sulpizio R, Andronico D (2003) Assessing pyroclastic fall hazard through field data and numerical simulations: example from Vesuvius. J Geophys Res 108(B2):ECV2.1–ECV2.11

    Article  Google Scholar 

  • Coltelli M, Del Carlo P, Vezzoli L (1998) Discovery of a Plinian basaltic eruption of Roman age at Etna volcano, Italy. Geology 26:1095–1098

    Article  Google Scholar 

  • Connor CB, Hill BE, Winfrey B, Franklin NM, La Femina PC (2001) Estimation of volcanic hazards from tephra fallout. Nat Hazards Rev 2:33–42

    Article  Google Scholar 

  • De Rita D, Giordano G, Esposito A, Fabbri M, Rodani S (2002) Large volume phreatomagmatic ignimbrites from the Colli Albano volcano (Middle Pleistocene, Italy). J Volcanol Geotherm Res 118:77–98

    Article  Google Scholar 

  • Fierstein J, Hildreth W (1992) The Plinian eruptions of 1912 at Novarupta, Katmai National Park, Alaska. Bull Volcanol 54:646–684

    Article  Google Scholar 

  • Fierstein J, Natherson M (1992) Another look at the calculation of fallout tephra volumes. Bull Volcanol 54:156–167

    Article  Google Scholar 

  • Folk RL, Ward WC (1957) Brazon river bar, a study in the significance of grain-size parameters. J Sediment Petrol 27:3–27

    Google Scholar 

  • Freda C, Gaeta M, Palladino DM, Trigila R (1997) The Villa Senni Eruption (Alban Hills, central Italy): the role of H2O and CO2 on the magma chamber evolution and on the eruptive scenario. J Volcanol Geotherm Res 78:103–120

    Article  Google Scholar 

  • Freundt A, Kutterolf S, Schmincke HU, Hansteen T, Wehrmann H, Perez W, Strauch W, Navarro M (2006) Volcanic hazards in Nicaragua: Past, present and future. In: Rose WI, Bluth GJS, Carr MJ, Ewert JW, Patino LC, Vallance JW (eds) Volcanic hazards in Central America. Geological Society of America, Special Paper 412, pp 141–165

  • Girard G, van Wyk de Vries B (2005) The Managua Graben and Las Sierras-Masaya volcanic complex (Nicaragua); pull-apart localization by an intrusive complex: results from analogue modelling. J Volcanol Geotherm Res 144:37–57

    Article  Google Scholar 

  • Head JW, Wilson L (1989) Basaltic pyroclastic eruptions: influence of gas-release patterns and volume fluxes on fountain structure, and the formation of cinder cones, spatter cones, rootless flows, lava ponds and lava flows. J Volcanol Geotherm Res 37:261–271

    Article  Google Scholar 

  • Hildreth W, Drake RE (1992) Volcano Quizapu, Chilean Andes. Bull Volcanol 54:93–125

    Article  Google Scholar 

  • Houghton BF, Smith RT (1993) Recycling of magmatic clasts during explosive eruptions—estimating the true juvenile content of phreatomagmatic volcanic deposits. Bull Volcanol 55:414–420

    Article  Google Scholar 

  • Houghton BF, Wilson CJN, Del Carlo P, Coltelli M, Sable JE, Carey R (2004) The influence of conduit processes on changes in style of basaltic Plinian eruptions: Tarawera 1886 and Etna 122b.c. J Volcanol Geotherm Res 137:1–14

    Article  Google Scholar 

  • Inman DL (1952) Measures for describing the size distribution of sediments. J Sediment Petrol 22:125–145

    Google Scholar 

  • Kutterolf S, Freundt A, Perez W, Wehrmann H, Schmincke HU (2007) Late Pleistocene to Holocene temporal succession and magnitudes of highly-explosive volcanic eruptions in west-central Nicaragua. J Volcanol Geotherm Res 163:55–82

    Article  Google Scholar 

  • Kutterolf S, Freundt A, Perez T, Morz U, Schacht H, Wehrmann H, Schmincke HU (2008a) Pacific offshore records of Plinian arc volcanism in central America, part 1: along-arc correlations. Geochem Geophys Geosyst 9:Q02S01 doi:10.1029/2007GC001631

    Article  Google Scholar 

  • Kutterolf S, Freundt A, Perez T (2008b) The Pacific offshore record of Plinian arc volcanism in Central America, part 2: tephra volumes and erupted masses. Geochem Geophys Geosyst 9:Q02S02 doi:10.1029/2007GC001791

    Article  Google Scholar 

  • La Femina PC, Dixon TH, Strauch W (2002) Bookshelf faulting in Nicaragua. Geology 30:751–754

    Article  Google Scholar 

  • Marzocchi W, Sandri L, Gasparini P, Newhall C, Boschi E (2004) Quantifying probabilities of volcanic events: the example of volcanic hazard at Mount Vesuvius. J Geophys Res 109:B11201 doi:10.1029/2004JB003155

    Article  Google Scholar 

  • Paladio-Melosantos ML, Solidum RU, Scott WE, Quiambao RB, Umbal JV, Rodolfo KS, Tubianosa BS, Delos Reyes PJ, Ruelo HR (1996) Tephra falls of the 1991 eruptions of Mount Pinatubo. In: Newhall CG, Punongbaya RS (eds) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines. Philippine Institute of Volcanology and Seismology, Quezon City, pp 513–535

    Google Scholar 

  • Palladino DM, Gaeta M, Marra F (2001) A large K-foiditic hydromagmatic eruption from the early activity of the Alban Hills Volcanic District, Italy. Bull Volcanol 63:345–359

    Article  Google Scholar 

  • Perez W, Freundt A (2006) The youngest highly explosive basaltic eruptions from Masaya Caldera (Nicaragua): stratigraphy and hazard assessment. In: Rose WI, Bluth GJS, Carr MJ, Ewert JW, Patino LC, Vallance JW (eds) Volcanic hazards in Central America. Geological Society of America, Special Paper 412, pp 198–208

  • Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51:1–15

    Article  Google Scholar 

  • Pyle DM (1990) New estimates for the volume of the Minoan eruption. In: Hardy DA (ed) Thera and the Aegean world. The Thera Foundation, London, pp 113–121

    Google Scholar 

  • Sable JE, Houghton BF, Del Carlo P, Coltelli M (2006a) Changing conditions of magma ascent and fragmentation during the Etna 122b.c. basaltic Plinian eruption: evidence from clasts microtextures. J Volcanol Geotherm Res 158:333–354

    Article  Google Scholar 

  • Sable JE, Houghton BF, Wilson CJN, Carey R (2006b) Complex proximal sedimentation from Plinian plumes: the example of Tarawera 1886 basaltic Plinian eruption. Bull Volcanol 69:89–103

    Article  Google Scholar 

  • Sarna-Wojcicki AM, Shipley S, Waitt JR, Dzurisin D, Wood SH (1981) Areal distribution thickness, mass, volume, and grain-size of airfall ash from the six major eruptions of 1980. In: Lipman WP, Mullineaux DR (eds) Eruptions of Mount St. Helens, Washington. US Geological Survey Professional Paper Washington, Washington DC, pp 577–600

    Google Scholar 

  • Scasso R, Corbella H, Tiberi P (1994) Sedimentological analysis of the tephra from 12–15 August 1991 eruption of Hudson Volcano. Bull Volcanol 56:121–132

    Google Scholar 

  • Self S, Zhao J-X, Holasek RE, Torres RC, King AJ (1996) The atmospheric impact of the 1991 Mount Pinatubo eruption. In: Newhall CG, Punongbaya RS (eds) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines. Philippine Institute of Volcanology and Seismology, Quezon City, pp 1089–1115

    Google Scholar 

  • Simkin T, Siebert L (1994) Volcanoes of the world. Geoscience Press Inc., Tucson

    Google Scholar 

  • Sparks RSJ (1986) The dimensions and dynamics of volcanic eruption columns. Bull Volcanol 48:3–15

    Article  Google Scholar 

  • Sparks RSJ, Wilson L, Sigurdsson H (1981) The pyroclastic deposits of the 1875 eruption of Askja, Iceland. Philos Trans R Soc Lond 229:241–273

    Google Scholar 

  • Sulpizio R (2005) Three empirical methods for the calculation of distal volume of tephra-fall deposits. J Volcanol Geotherm Res 145:315–336

    Article  Google Scholar 

  • Sulpizio R, Mele D, Dellino P, La Volpe L (2005) A complex, subplinian-type eruption from low-viscosity, phonolitic to tephri-phonolitic magma: the AD 472 (Pollena) eruption of Somma-Vesuvius, Italy. Bull Volcanol 67:743–767

    Article  Google Scholar 

  • Vergniolle S, Mangan M (1999) Hawaiian and Strombolian eruptions. In: Sigurdsson H, Houghton BF, McNutt S, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 447–462

    Google Scholar 

  • Walker GPL (1971) Grainsize characteristics of pyroclastic deposits. J Geol 79:696–714

    Article  Google Scholar 

  • Walker GPL (1980) The Taupo pumice: product of the most powerful known (Ultraplinian) eruption. J Volcanol Geotherm Res 8:69–94

    Article  Google Scholar 

  • Walker GPL (1983) Ignimbrite types and ignimbrite problems. J Volcanol Geotherm Res 17:65–88

    Article  Google Scholar 

  • Walker GPL, Croasdale R (1972) Characteristics of some basaltic pyroclasts. Bull Volcanol 35:303–317

    Article  Google Scholar 

  • Walker GPL, Self S, Wilson L (1984) Tarawera, 1886, New Zealand—a basaltic Plinian fissure eruption. J Volcanol Geotherm Res 21:61–78

    Article  Google Scholar 

  • Watkins SD, Giordano G, Cas RAF, De Rita D (2002) Emplacement processes of the mafic Villa Senni Eruption Unit (VSEU) ignimbrite succession, Colli Albani volcano, Italy. J Volcanol Geotherm Res 118:173–203

    Article  Google Scholar 

  • Wehrmann H, Bonadonna C, Freundt A, Houghton BF, Kutterolf S (2006) Fontana Tephra: a basaltic Plinian eruption in Nicaragua. In: Rose WI, Bluth GJS, Carr MJ, Ewert JW, Patino LC, Vallance JW (eds) Volcanic hazards in Central America. Geological Society of America, Special Paper 412, pp 209–224

  • Wentworth CK, MacDonald GA (1953) Structures and forms of basaltic rocks in Hawaii. US Geol Surv Bull 994:1–98

    Google Scholar 

  • Wiesner MG, Wang YW, Zheng L (1995) Fallout of volcanic ash to the deep South China Sea induced by the 1991 eruption of Mount Pinatubo (Philippines). Geology 23:885–888

    Article  Google Scholar 

  • Wiesner MG, Wang Y (1996) Dispersal of the 1991 Pinatubo tephra in the South China Sea. In: Newhall CG, Punongbaya RS (eds) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines. Institute of Volcanology and Seismology, Quezon City, pp 537–543

    Google Scholar 

  • Williams SN (1983) Plinian airfall deposits of basaltic composition. Geology 11:211–214

    Article  Google Scholar 

  • Wilson L, Walker GPL (1987) Explosive volcanic eruptions—VI. Ejecta dispersal in Plinian eruptions: the control of eruption conditions and atmospheric properties. Geophys J R Astron Soc 89:657–679

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the staff of the Instituto Nicaraguense de Estudios Territoriales (INETER) for their crucial support during field work and to Steffen Kutterolf for kindly providing information on marine-core data. We also thank Raffaello Cioni for the helpful comments and suggestions on the draft manuscript and the University of South Florida (USF) for the use of the Malvern PharmaVision 830 automated optical device. The manuscript benefited greatly from the constructive reviews of Andy Harris, Roberto Sulpizio and Don Swanson. This work was supported by NSF grants EAR-01-25719, EAR-03-10096, and EAR-05-37459, and by a fellowship from University of Rome La Sapienza (to Costantini). This is contribution no. 127 to Sonderforschungsbereich 574 “Volatiles and Fluids in Subduction Zones” at Kiel University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Costantini.

Additional information

Editorial responsibility: A. Harris

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costantini, L., Bonadonna, C., Houghton, B.F. et al. New physical characterization of the Fontana Lapilli basaltic Plinian eruption, Nicaragua. Bull Volcanol 71, 337–355 (2009). https://doi.org/10.1007/s00445-008-0227-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-008-0227-9

Keywords

Navigation