Skip to main content
Log in

Establishment of an immortalized cell line derived from the pupal ovary of Mythimna separata (Lepidoptera: Noctuidae) and identification of the cell source

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Determining the source of primary cells is conductive to enriching sufficient cells with immortal potential thereby improving the success rate of establishing cell lines. However, most of the existing insect cell lines are established by mixing and fragmentation of explants. At present, the origin of cell lines can only be determined according to the cultured tissues, so it is impossible to determine which cell types they come from. In this study, a new cell line designated IOZCAS-Myse-1 was generated from pupal ovaries of the migratory pest Mythimna separata by explant tissues to derive adherent cultures. This paper mainly shows the further descriptive information on the origin of primary cells in the process of ovarian tissue isolation and culture. Phospho-histone H3 antibody-labeled cells with mitotic activity showed that the rapidly developing somatic cells in vivo gradually stopped proliferation when cultured ex vivo. The primary cells dissociated outside the tissue originated from the lumen cells, rather than the germ cells or the follicular epithelium cells. The results suggest that the newly established cell line IOZCAS-Myse-1 had two possible sources. One is the mutation of lumen cells in the vitellarium, and the other is the stem cells with differentiation potential in the germarium of the ovarioles. Moreover, the newly established cell line is sensitive to the infection of Autographa californica multiple nucleopolyhedrovirus, responds to 20-hydroxyecdysone and has weak encapsulation ability. Therefore, the new cell line can be a useful platform for replication of viral insecticides, screening of hormone-based insecticides and immunology research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alves TJ, Cruz GS, Wanderley-Teixeira V, Teixeira AA, Oliveira JV, Correia AA, Camara CA, Cunha FM (2014) Effects of Piper hispidinervum on spermatogenesis and histochemistry of ovarioles of Spodoptera frugiperda. Biotech Histochem 89(4):245–255

    Article  CAS  PubMed  Google Scholar 

  • Brunold E (1957) Die Entwicklung des weiblichen Genitalapparates von Solenobia triquetrella F. R. (Lepid. Psychidae) während des Puppenstadiums. Zool 75:581–614

    Google Scholar 

  • Büning J (1994) The insect ovary. Ultrastructure, previtellogenic growth and evolution. Chapman and Hall, London, pp 40–61

  • Chisa YA, Imanishi S, Iiyama K, Kawarabata T (2014) Establishment of phagocytic cell lines from larval hemocytes of the beet armyworm, Spodoptera exigua. In Vitro Cell Dev Biol Anim 40(7):183–186

    Article  Google Scholar 

  • Cruickshank WJ (1973) The ultrastructure and functions of the ovariole sheath and tunica propria in the flour moth. J Insect Physiol 19(3):577–592

    Article  Google Scholar 

  • Dobens LL, Raftery LA (2010) Integration of epithelial patterning and morphogenesis in Drosophila ovarian follicle cells. Dev Dynam 218(1):80–93

    Article  Google Scholar 

  • Duhart JC, Parsons TT, Raftery LA (2017) The repertoire of epithelial morphogenesis on display: progressive elaboration of Drosophila egg structure. Mech Dev 148:18–39

    Article  CAS  PubMed  Google Scholar 

  • Eystathioy T, Swevers L, Iatrou K (2001) The orphan nuclear receptor BmHR3A of Bombyx mori: hormonal control, ovarian expression and functional properties. Mech Dev 103(1–2):107–115

    Article  CAS  PubMed  Google Scholar 

  • Ferguson DCJ, Smerdon GR, Harries LW, Dodd NJF, Murphy MP, Curnow A, Winyard PG (2018) Altered cellular redox homeostasis and redox responses under standard oxygen cell culture conditions versus physioxia. Free Radic Biol Med 126:322–333

    Article  CAS  PubMed  Google Scholar 

  • Fessler JH, Fessler LI (1989) Drosophila extracellular matrix. Annu Rev Cell Biol 5:309–339

    Article  CAS  PubMed  Google Scholar 

  • Finegan TM, Na D, Cammarota C, Skeeters AV, Nadasi TJ, Dawney NS, Fletcher AG, Oakes PW, Bergstralh DT (2019) Tissue tension and not interphase cell shape determines cell division orientation in the Drosophila follicular epithelium. Embo J 38(3):e100072

  • Grace TDC (1967) Establishment of a line of cells from the silkworm Bombyx mori. Nature 216(5115):613

    Article  CAS  PubMed  Google Scholar 

  • Grace TDC (1958) Effects of various substances on growth of silkworm tissues in vitro. Aust J Biol Sci 11(3):407–417

    Article  CAS  Google Scholar 

  • Granados RR, Li D, Derksen ACG, Mckenna KA (1994) A new insect cell line from Trichoplusia ni (BTI-Tn-5B1-4) susceptible to Trichoplusia ni single enveloped nuclear polyhedrosis virus. J Invertebr Pathol 64(3):260–266

    Article  Google Scholar 

  • Goodwin RH (1975) Insect cell culture: Improved media and methods for initiating attached cell lines from the lepidoptera. In Vitro 11(6):369–378

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Hink WF, Thomsen DR, Davidson DJ, Meyer AL, Castellino FJ (1991) Expression of three recombinant proteins using baculovirus vectors in 23 insect cell lines. Biotechnol Prog 7(1):9–14

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Luo L, Zhang L, Sappington TW, Hu Y (2011) Regulation of migration in Mythimna separata (Walker) in China: a review integrating environmental, physiological, hormonal, genetic, and molecular factors. Environ Entomol 40(3):516–533

    Article  CAS  PubMed  Google Scholar 

  • Johnson CG (1969) Migration and dispersal of insects by flight. Methuen, London

    Google Scholar 

  • Jones BM, Cunningham I (1960) Growth by cell division in insect tissue culture. Nature 187(2):1072–1074

    Article  CAS  PubMed  Google Scholar 

  • Khurad AM, Kanginakudru S, Qureshi SO, Rathod MK, Rai MM, Nagaraju J (2006) A new Bombyx mori larval ovarian cell line highly susceptible to nucleopolyhedrovirus. J Invertebr Pathol 92(2):59–65

    Article  CAS  PubMed  Google Scholar 

  • Khurad AM, Zhang MJ, Deshmukh CG, Bahekar RS, Tiple AD, Zhang CX (2009) A new continuous cell line from larval ovaries of silkworm, Bombyx mori. In Vitro Cell Dev Biol Anim 45(8):414–419

    Article  PubMed  Google Scholar 

  • King RC, Aggarwal SK (1965) Oogenesis in Hyalophora Cecropia. Growth 29:18–73

    Google Scholar 

  • King RC, Biining J (1985) The origin and functioning of insect oocytes and nurse cells. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol I. Pergamon Press, Oxford, pp 37–82

    Google Scholar 

  • Kolahi KS, White PF, Shreter DM, Classen AK, Bilder D, Mofrad MR (2009) Quantitative analysis of epithelial morphogenesis in Drosophila oogenesis: new insights based on morphometric analysis and mechanical modeling. Dev Biol 331(2):129–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuchler RJ (1977) Development of animal cell populations in vitro. In: Kuchler RJ (ed) Biochemical methods in cell culture and virology Inc. Stroudsburg, pp 90–113

  • Li GX, Yu HC, Song J, Li CY, Wang XY (1998) New cell line from embryos of Mythimna separata (Lepidoptera: Noctuidae). Insect Sci 5(1):89–94

    Article  Google Scholar 

  • Lynn DE (2002) Methods for maintaining insect cell cultures. J Insect Sci 2(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazurkiewicz-Kania M, Simiczyjew B, Jędrzejowska I (2019) Differentiation of follicular epithelium in polytrophic ovaries of Pieris napi (Lepidoptera: Pieridae)—how far to Drosophila model. Protoplasma 256(5):1433–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazurkiewicz M, Kubrakiewicz J (2008) Follicular cell differentiation in polytrophic ovaries of a moth midge Tinearia Alternata. Int J Dev Biol 52(2–3):267–278

    Article  PubMed  Google Scholar 

  • McIntosh AH, Ignoffo CM (1983) Characterization of five cell lines established from species of Heliothis. Appl Ent Zool 18(2):262–269

    Article  Google Scholar 

  • McIntosh AH, Grasela JJ, Matteri RL (1996) Identification of insect cell lines by DNA amplification fingerprinting (DAF). Insect Mol Biol 5(3):187–195

    Article  CAS  PubMed  Google Scholar 

  • Meng XQ, Zheng GL, Zhao CD, Wan FH, Li CY (2017) A cell clone strain from Mythimna separata (Lepidoptera: Noctuidae) highly susceptible to Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and M. separata NPV (MsNPV). In Vitro Cell Dev Biol Anim 53(7):646–650

  • Michael RC (1974) Ultrastructure of ovarian epithelial sheath in Drosophila melanogaster meigen (Diptera: Drosophilidae). Int J Insect Morphol Embryol 3(1):137–145

    Article  Google Scholar 

  • Mitsuhashi J (1983) Continuous cell line derived from fat bodies of the common armyworm, Leucamia separata (Lepidoptera: Noctuidae). Appl Entomol Zool 18:533-539

  • Mitsuhashi J (1989) Invertebrate cell system applications: volume II. In: Mitsuhashi J (ed) Invertebrate cell system applications, vol II. CRC Press, Boca Raton, pp 78, 260

  • Mitsuhashi J (2002) Invertebrate tissue culture methods. In: Mitsuhashi J (ed). Springer, Tokyo, pp 5, 47–50

  • Nakahara Y, Kanamori Y, Kiuchi M, Kamimura M (2010) Two hemocyte lineages exist in silkworm larval hematopoietic organ. PLoS One 5(7):e11816

  • Pan MH, Cai XJ, Liu M, Lv J, Tang H, Tan J, Lu C (2010) Establishment and characterization of an ovarian cell line of the silkworm Bombyx Mori. Tissue Cell 42(1):42–46

    Article  CAS  PubMed  Google Scholar 

  • Peterson JS, Timmons AK, Mondragon AA, Mccall K (2015) The end of the beginning: cell death in the germline. Curr Top Dev Biol 114:93–119

    Article  CAS  PubMed  Google Scholar 

  • Qiu W, Tu YZ, Zhu GK (1991) Host property of baculovirus in lepidoptera cell lines. Science 5:372–374

    Google Scholar 

  • Quiot JM (1982) Establishment of cell line (S.P.C. Bm 36) from the ovaries of Bombyx mori L. (Lepidoptera). Sericologia 22:25–31

    Google Scholar 

  • Salt G (1967) Cellular defense mechanisms in insects. Fed Proc 26(6):1671–1674

    CAS  PubMed  Google Scholar 

  • Santos DC, Gregorio EA (2002) Ultrastructure of the ovariole sheath in Diatraea saccharalis (Lepidoptera: Pyralidae). Biocell 26(2):229–235

    Article  PubMed  Google Scholar 

  • Santos DC, Gregorio EA (2006) Morphological aspects of cluster formation in the germarium of the sugarcane borer Diatraea saccharalis Fabricius (Lepidoptera: Pyralidae). Neotrop Entomol 35(5):644–653

    Article  PubMed  Google Scholar 

  • Schneider I (1972) Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol 27(2):353–365

    CAS  PubMed  Google Scholar 

  • Shen LM, Liu KY (1983) Reports on the establishment of blood cells in myxomycosis. J Entomol 3:123–128

    CAS  Google Scholar 

  • Smagghe G, Goodman CL, Stanley D (2009) Insect cell culture and applications to research and pest management. In Vitro Cell Dev Biol Anim 45(3–4):93–105

    Article  PubMed  Google Scholar 

  • Stanley M, Kirkland JL (1968) Origin of migrating cells in cultures of moth ovarian tissue based on developmental stages producing optimum outgrowth. Ann Entomol Soc Am 61(5):1067–1072

    Article  Google Scholar 

  • Stanley M, Vaughn JL (1968) Histologic changes in ovaries of Bombyx mori in tissue culture. Ann Entomol Soc Am 61(5):1064–1067

    Article  Google Scholar 

  • Su R, Zheng GL, Wan FH, Li CY (2016) Establishment and characterization of three embryonic cell lines of beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae). Cytotechnology 68(4):1223–1232

    Article  CAS  PubMed  Google Scholar 

  • Sudeep AB, Mishra AC, Shouche YS, Pant U, Mourya DT (2002) Establishment of two new cell lines from Bombyx mori (L.) (Lepidoptera: Bombycidae) & their susceptibility to baculoviruses. Indian J Med Res 115:189–193

    CAS  PubMed  Google Scholar 

  • Swevers L, Iatrou K (1992) Early establishment and autonomous implementation of a developmental program controlling silkmoth chorion gene expression. Dev Biol 150(1):12–22

    Article  CAS  PubMed  Google Scholar 

  • Swevers L, Iatrou K (2003) The ecdysone regulatory cascade and ovarian development in lepidopteran insects: insights from the silkmoth paradigm. Insect Biochem Mol Biol 33(12):1285–1297

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Mitsuhashi J, Ohtaki T (1980) Establishment of a cell line from embryonic tissues of the fleshfly, Sarcophaga peregrine (Insecta: Diptera). Develop Growth Differ 22(1):11–19

    Article  Google Scholar 

  • Van De Bor V, Zimniak G, Papone L, Cerezo D, Malbouyres M, Juan T, Ruggiero F, Noselli S (2015) Companion blood cells control ovarian stem celln niche microenvironment and homeostasis. Cell Rep 13(3):546–560

    Article  CAS  PubMed  Google Scholar 

  • Vaughn JL, Goodwin RH, Tompkins GJ, Mccawley P (1977) The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera; Noctuidae). In Vitro 13(4):213–217

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Toung R, Granados RR (1999) The establishment of new cell lines from Pseudaletia unipuncta with differential responses to baculovirus infection. In Vitro Cell Dev Biol Anim 35(6):333–338

    Article  CAS  PubMed  Google Scholar 

  • Wu TN, Guo F (1964) Studies on the reproduction of the armyworm, Leucania separata Walker (Lepidoptera: Noctuidae). Acta Entomol Sin 13:795–802

    Google Scholar 

  • Yamauchi H, Yoshitake N (1984) Developmental stages of ovarian follicles of the silkworm Bombyx Mori. l J Morphol 179(1):21–31

    Article  PubMed  Google Scholar 

  • Yu HC, Li G, X., Wang XY and Song LL, (2000) Study on the condition of sub-cultures of the cells of Mythimna separata embryos. J Northeast Agric Univ 2:116–120

    Google Scholar 

  • Yu HC, Zheng GL, Wang XY, Li GX, Zhao KJ (2003) Establishment of a cell line from embryos of Mythimna separata and its susceptibility to MsNPV. Virologica Sinica 1:33–36

    Google Scholar 

  • Zhang H, Zhang YA, Qin Q, Li X, Miao L, Wang Y, Yang Z, Ding C (2006) New cell lines from larval fat bodies of Spodoptera exigua: characterization and susceptibility to baculoviruses (Lepidoptera: Noctuidae). J Invertebr Pathol 91(1):9–12

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhang YA, Qin QL, Wang YZ, Qu LJ, Li X, Miao L, Yin ZX, Zhang AJ, Wen FY (2007) Advances in establishment of insect cell lines. Acta Entomol Sin 8:834–839

    Google Scholar 

  • Zheng GL (2010) Characteristics of cell lines of lepidopteran insects and expression of recombinant protein by new cell clones derived from Trichoplusia ni (QB-Tn9–4s). Shandong Agricultural University

  • Zhou K, Goodman CL, Ringbauer J Jr, Song Q, Beerntsen B, Stanley D (2020) Establishment of two midgut cell lines from the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). In Vitro Cell Dev Biol Anim 56(1):10–14

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Chang-You Li for providing cell line QAU-Se-E-3 established from embryo of Spodoptera exigua.

Funding

This work was supported by the National Nature Science Foundation of China (Project No. 31671404), and the Key Research Program of the Chinese Academy of Sciences (No. KJZD-SW-L07).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Xiang Xu or Huan Zhang.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, Y., Cheng, LQ., Li, X. et al. Establishment of an immortalized cell line derived from the pupal ovary of Mythimna separata (Lepidoptera: Noctuidae) and identification of the cell source. Cell Tissue Res 386, 661–677 (2021). https://doi.org/10.1007/s00441-021-03528-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-021-03528-2

Keywords

Navigation