Skip to main content

Advertisement

Log in

MicroRNAs in Sertoli cells: implications for spermatogenesis and fertility

  • Mini Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In recent decades, infertility has been considered a major widespread public health issue of very high concern. Currently, almost 50% of infertility cases are due to male factors, including semen disorders, obstructions, cryptorchidism, varicocele and testicular failures, which can occur due to malfunctions in both somatic and germ cells. In this context, besides other approaches, different miRNAs have been used as biomarkers for the diagnosis of male infertility, with different pathologic conditions such as Sertoli cell-only syndrome, mixed atrophy, and germ cell arrest. However, most studies related to male fertility do not point out the functions and cell targets of the described miRNAs. Initial investigations using experimental assays in murine and porcine models were performed, providing the first evidence of the influence of miRNAs on Sertoli cell function including, for instance, proliferation, maturation and hormone responses of these cells. The aim of this mini-review is therefore to summarize our present knowledge of this relevant subject and to highlight the importance of future investigations concerning the miRNA influence in the control of Sertoli cells, spermatogenesis and male fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abu-Halima M, Hammadeh M, Schmitt J, Leidinger P, Keller A, Meese E, Backes C (2013) Altered microRNA expression profiles of human spermatozoa in patients with different spermatogenic impairments. Fertil Steril 357:1249–1255

    Article  Google Scholar 

  • Abu-Halima M, Backes C, Leidinger P, Keller A, Lubbad AM, Hammadeh M, Meese E (2014) MicroRNA expression profiles in human testicular tissues of infertile men with different histopathologic patterns. Fertil Steril 101:78–86

    Article  CAS  PubMed  Google Scholar 

  • Adams BD, Claffey KP, White BA (2009) Argonaute-2 expression is regulated by epidermal growth factor receptor and mitogen-activated protein kinase signaling and correlates with a transformed phenotype in breast cancer cells. Endocrinology 150:14–23

    Article  CAS  PubMed  Google Scholar 

  • Aiyama Y, Tsunekawa N, Kishi K, Kawasumi M, Suzuki H, Kanai-Azuma M, Kurohmaru M, Kanay Y (2015) A niche for GFRα1-positive spermatogonia in the terminal segments of the seminiferous tubules in hamster testes. Stem Cells 33:2811–2824

    Article  CAS  PubMed  Google Scholar 

  • Alves MG, Rato L, Carvalho RA, Moreira PI, Socorro S, Oliveira PF (2013) Hormonal control of Sertoli cell metabolism regulates spermatogenesis. Cell Mol Life Sci 70:777–793

    Article  CAS  PubMed  Google Scholar 

  • Assoian RK, Yung Y (2008) A reciprocal relationship between Rb and Skp2: implications for restriction point control, signal transduction to the cell cycle, and cancer. Cell Cycle 7:24–27

    Article  CAS  PubMed  Google Scholar 

  • Auharek AS, França LR (2010) Postnatal testis development, Sertoli cell proliferation and number of different spermatogonial types in C57BL/6J mice made transiently hypo- and hyperthyroidic during the neonatal period. J Anat 216:577–588

    Article  PubMed  PubMed Central  Google Scholar 

  • Aza-Blanc P, Lin HY, Ruiz i Altaba A, Kornberg TB (2000) Expression of the vertebrate Gli proteins in drosophila reveals a distribution of activator and repressor activities. Development 127:4293–4301

    PubMed  Google Scholar 

  • Bao J, Li D, Wang L, Wu J, Hu Y, Wang Z, Chen Y, Cao X, Jiang C, Yan W, Xu C (2012) MicroRNA-449 and microRNA-34b/c function redundantly in murine testes by targeting E2F transcription factor-retinoblastoma protein (E2F-pRb) pathway. J Biol Chem 287:21686–21698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bertoldo MJ, Faure M, Dupont J, Froment P (2015) AMPK: a master energy regulator for gonadal function. Front Neurosci 9:235

    Article  PubMed  PubMed Central  Google Scholar 

  • Bitgood MJ, Shen L, McMahon AP (1996) Sertoli cell signaling by desert hedgehog regulates the male germline. Curr Biol 6:298–304

    Article  CAS  PubMed  Google Scholar 

  • Cavalcanti MCO, Steilmann C, Failing K (2001) Apoptotic gene expression in potentially fertile and subfertile men. Mol Hum Reprod 17:415–420

    Article  Google Scholar 

  • Chang YF, Lee-Chang JS, Imam JS, Buddavarapu KC, Subaran SS, Sinha-Hikim AP, Gorospe M, Rao MK (2012) Interaction between microRNAs and actin-associated protein Arpc5 regulates translational suppression during male germ cell differentiation. Proc Natl Acad Sci U S A 109:5750–5755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J (2016) The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb Perspect Med 6:a026104

    Article  PubMed  Google Scholar 

  • Chen X, Li X, Guo J, Zhang P, Zeng W (2017) The roles of microRNAs in regulation of mammalian spermatogenesis. J Anim Sci Biotechnol 8:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng YS, Chung CL, Chen CF, Lin YM (2017) Differential expression of microRNAs and their messengerRNA targets in men with normal spermatogenesis versus Sertoli cell-only syndrome. Urol Sci 28:42–49

    Article  Google Scholar 

  • Conlon N, Schultheis AM, Piscuoglio S, Silva A, Guerra E, Tornos C, Reuter VE, Soslow RA, Young RH, Oliva E, Weigelt B (2015) A survey of DICER1 hotspot mutations in ovarian and testicular sex cord-stromal tumors. Mod Pathol 28:1603–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coutton C, Fissore RA, Palermo GD, Stouffs K, Touré A (2016) Male infertility: genetics, mechanism, and therapies. Biomed Res Int 2016:7372362

    Article  PubMed  PubMed Central  Google Scholar 

  • Dabaja AA, Mielnik A, Robinson BD, Wosnitzer MS, Schlegel PN, Paduch DA (2015) Possible germ cell-Sertoli cell interactions are critical for establishing appropriate expression. Levels for the Sertoli cell-specific MicroRNA, miR-202-5p, in human testis. Basic Clin Androl 25:1–8

    Article  Google Scholar 

  • Dores C, Alpaugh W, Su L, Biernaskie J, Dobrinski I (2016) Primary cilia on porcine testicular somatic cells and their role in hedgehog signaling and tubular morphogenesis in vitro. Cell Tissue Res. doi:10.1007/s00441-016-2523-6

  • Dubé E, Hermo L, Chan PT, Cyr DG (2008) Alterations in gene expression in the caput epididymides of nonobstructive azoospermic men. Biol Reprod 78:342–351

    Article  PubMed  Google Scholar 

  • Duisters RF, Tijsen AJ, Schroen B, Leenders JJ, Lentink V, van der Made I, Herias V, van Leeuwen RE, Schellings MW, Barenbrug P, Maessen JG, Heymans S, Pinto YM, Creemers EE (2009) miR-133 and miR-30 regulate connective tissue growth factor implications for a role of microRNAs in myocardial matrix remodeling. Circ Res 104:170–178

    Article  CAS  PubMed  Google Scholar 

  • El Chami N, Ikhlef F, Kaszas K, Yakoub S, Tabone E, Siddeek B, Cunha S, Beaudoin C, Morel L, Benahmed M, Régnier DC (2005) Androgen-dependent apoptosis in male germ cells is regulated through the proto-oncoprotein Cbl. J Cell Biol 171:651–661

    Article  PubMed  PubMed Central  Google Scholar 

  • Faubert B, Vincent EE, Poffenberger MC, Jones RG (2015) The AMP-activated protein kinase (AMPK) and cancer: many faces of a metabolic regulator. Cancer Lett 356:165–170

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo AFA, França LR, Hess RA, Costa GMJ (2016) Sertoli cells are capable of proliferation into adulthood in the transition region between the seminiferous tubules and the rete testis in Wistar rats. Cell Cycle 15:2486–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franca LR, Silva VA Jr, Chiarini-Garcia H, Garcia SK, Debeljuk L (2000) Cell proliferation and hormonal changes during postnatal development of the testis in the pig. Biol Reprod 63:1629–1636

    Article  CAS  PubMed  Google Scholar 

  • França LR, Nobrega RH, Morais RDVS, Assis LHC, Schulz RW (2015) Sertoli cell structure and function in anamniote vertebrates. In: Griswold M (ed) Sertoli cell biology. Elsevier, San Diego, pp 385–407

    Chapter  Google Scholar 

  • França LR, Hess RA, Dufour JM, Hofmann MC, Griswold MD (2016) The Sertoli cell: one hundred fifty years of beauty and plasticity. Andrology 4:189–212

    Article  PubMed  PubMed Central  Google Scholar 

  • Grataroli R, Vindrieux D, Selva J, Felsenheld C, Ruffion A, Decaussin M, Benahmed M (2004) Characterization of tumour necrosis factor-alpha-related apoptosis-inducing ligand and its receptors in the adult human testis. Mol Hum Reprod 10:123–128

    Article  CAS  PubMed  Google Scholar 

  • Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524

    Article  CAS  PubMed  Google Scholar 

  • Hadziselimovic F, Hadziselimovic NO, Demougin P, Oakeley EJ (2011) Testicular gene expression in cryptorchid boys at risk of azoospermia. Sex Dev 5:49–59

    Article  CAS  PubMed  Google Scholar 

  • Heravi-Moussavi A, Anglesio M, Cheng S, Senz J, Yang W, Prentice L, Fejes A, Chow C, Tone A, Kalloger S, Hamel N, Roth A, Ha G, Wan A, Maines-Bandiera S, Salamanca C, Pasini B, Clarke B, Lee A, Lee C, Zhao C, Young R, Aparicio S, Sorensen P, Woo M, Boyd N, Jones S, Hirst M, Marra M, Gilks B, Shah SP, Foulkes WD, Morin GB, Huntsman DG (2012) Recurrent somatic DICER1 mutations in nonepithelial ovarian cancers. N Engl J Med 366:234–242

    Article  CAS  PubMed  Google Scholar 

  • Hess RA, França LR (2007) Spermatogenesis and cycle of the seminiferous epithelium. In: Cheng CY (ed) Molecular mechanisms in spermatogenesis. Landes Bioscience, New York

    Google Scholar 

  • Hidaka H, Seki N, Yoshino H, Yamasaki T, Yamada Y, Nohata N, Fuse M, Nakagawa M, Enokida H (2012) Tumor suppressive microRNA-1285 regulates novel molecular targets: aberrant expression and functional significance in renal cell carcinoma. Oncotarget 3:44–57

    Article  PubMed  PubMed Central  Google Scholar 

  • Holdcraft RW, Braun RE (2004) Androgen receptor function is required in Sertoli cells for the terminal differentiation of haploid spermatids. Development 131:459–467

    Article  CAS  PubMed  Google Scholar 

  • Hsieh CH, Rau CS, Jeng JC, Chen YC, Lu TH, Wu CJ, Wu YC, Tzeng SL, Yang JCS (2012) Whole blood-derived microRNA signatures in mice exposed to lipopolysaccharides. J Biomed Sci 19:69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu R, Aplin AE (2008) Skp2 regulates G2/M progression in a p53-dependent manner. Mol Biol Cell 19:4602–4610

  • Jiao ZJ, Yi W, Rong YW, Kee JD, Zhong WX (2015) MicroRNA-1285 regulates 17β-estradiol-inhibited immature boar Sertoli cell proliferation via adenosine monophosphate-activated protein kinase activation. Endocrinology 156:4059–4070

    Article  CAS  PubMed  Google Scholar 

  • Juul A, Almstrup K, Andersson AM, Jensen TK, Jørgensen N, Main KM, Rajpert-De Meyts E, Toppari J, Skakkebæk NE (2014) Possible fetal determinants of male infertility. Nat Rev Endocrinol 10:553–562

    Article  CAS  PubMed  Google Scholar 

  • Kim GJ, Georg I, Scherthan H, Merkenschlager M, Guillou F, Scherer G, Barrionuevo F (2010) Dicer is required for Sertoli cell function and survival. Int J Dev Biol 54:867–875

    Article  CAS  PubMed  Google Scholar 

  • Korhonen HM, Meikar O, Yadav RP, Papaioannou MD, Romero Y, Da RM, Herrera PL, Toppari J, Nef S, Kotaja N (2011) Dicer is required for haploid male germ cell differentiation in mice. PLoS ONE 6:e24821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korhonen HM, Yadav RP, Da Ros M, Chalmel F, Zimmermann C, Toppari J, Nef S, Kotaja N (2015) DICER regulates the formation and maintenance of cell-cell junctions in the mouse seminiferous epithelium. Biol Reprod 93:139

    Article  PubMed  Google Scholar 

  • Kotaja N (2014) MicroRNAs and spermatogenesis. Fertil Steril 101:1552–1562

    Article  CAS  PubMed  Google Scholar 

  • Leal MC, Franca LR (2009) Slow increase of Sertoli cell efficiency and daily sperm production causes delayed establishment of full sexual maturity in the rodent Chinchilla lanigera. Theriogenology 71:509–518

    Article  CAS  PubMed  Google Scholar 

  • Lee ST, Chu K, Jung KH, Ban JJ, Im WS, Jo HY, Park JH, Lim JY, Shin JW, Moon J, Lee SK, Kim M, Roh JK (2015) Altered expression of miR-202 in cerebellum of multiple-system atrophy. Mol Neurobiol 51:180–186

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Huang R, Wang L, Hao J, Zhang Q, Ling R, Yun J (2015) microRNA-762 promotes breast cancer cell proliferation and invasion by targeting IRF7 expression. Cell Prolif 48:643–649

    Article  CAS  PubMed  Google Scholar 

  • Lin YC, Richburg JH (2014) Characterization of the role of tumor necrosis factor apoptosis inducing ligand (TRAIL) in spermatogenesis through the evaluation of trail gene-deficient mice. PLoS ONE 9:e93926

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo L, Ye L, Liu G, Shao G, Zheng R, Ren Z, Zuo B, Xu D, Lei M, Jiang S, Deng C, Xiong Y, Li F (2010) Microarray-based approach identifies differentially expressed microRNAs in porcine sexually immature and mature testes. PLoS ONE 5:e11744

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma C, Song H, Yu L, Guan K, Hu P, Li Y, Xia X, Li J, Jiang S, Li F (2016) MiR-762 promotes porcine immature Sertoli cell growth via the ring finger protein 4 (RNF4) gene. Sci Rep 6:32783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McIver SC, Roman SD, Nixon B, McLaughlin EA (2012) miRNA and mammalian male germ cells. Hum Reprod Update 18:44–59

    Article  CAS  PubMed  Google Scholar 

  • McKee CM, Ye Y, Richburg JH (2006) Testicular germ cell sensitivity to TRAIL-induced apoptosis is dependent upon p53 expression and is synergistically enhanced by DR5 agonistic antibody treatment. Apoptosis 11:2237–2250

    Article  CAS  PubMed  Google Scholar 

  • McLachlan RI, O’Donnell L, Meachem SJ, Stanton PG, de Kretser DM, Pratis K, Robertson DM (2002) Identification of specific sites of hormonal regulation in spermatogenesis in rats, monkeys, and man. Recent Prog Horm Res 57:149–179

    Article  CAS  PubMed  Google Scholar 

  • Mo X, Lu Y, Han J (2014) Effects of targeted modulation of miR-762 on expression of the IFITM5 gene in Saos-2 cells. Intractable Rare Dis Res 3:12–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Moilanen AM, Poukka H, Karvonen U, Hakli M, Janne OA, Palvimo JJ (1998) Identification of a novel RING finger protein as a coregulator in steroid receptor-mediated gene transcription. Mol Cell Biol 18:5128–5139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morin RD, O’Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL, Zhao Y, McDonald H, Zeng T, Hirst M, Eaves CJ, Marra MA (2008) Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18:610–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mruk DD, Cheng CY (2004) Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev 25:747–806

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee A, Koli S, Reddy KVR (2014) Regulatory non-coding transcripts in spermatogenesis: shedding light on ‘dark matter. Andrology 2:360–369. doi:10.1111/j.2047-2927.2014.00183.x

  • Mun J, Tam C, Chan G, Kim JH, Evans D, Fleiszig S (2013) MicroRNA-762 is upregulated in human corneal epithelial cells in response to tear fluid and Pseudomonas aeruginosa antigens and negatively regulates the expression of host defense genes encoding RNase7 and ST2. PLoS ONE 8:e57850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholls PK, Harrison CA, Walton KL, McLachlan RI, O’Donnell L, Stanton PG (2011) Hormonal regulation of Sertoli cell micro-RNAs at spermiation. Endocrinology 152:1670–1683

    Article  CAS  PubMed  Google Scholar 

  • Noveski P, Popovska-Jankovic K, Kubelka-Sabit K, Filipovski V, Lazarevski S, Plaseski T, Plaseska-Karanfilska D (2016) MicroRNA expression profiles in testicular biopsies of patients with impaired spermatogenesis. Andrology. doi:10.1111/andr.12246

  • O’Donnell L, Pratis K, Wagenfeld A, Gottwald U, Müller J, Leder G, McLachlan RI, Stanton PG (2009) Transcriptional profiling of the hormone-responsive stages of spermatogenesis reveals cell-, stage-, and hormone-specific events. Endocrinology 150:5074–5084

    Article  PubMed  Google Scholar 

  • O’Hara L, Smith LB (2015) Androgen receptor roles in spermatogenesis and infertility. Best Pract Res Clin Endocrinol Metab 29:595–605

    Article  PubMed  Google Scholar 

  • Okada H, Tajima A, Shichiri K, Tanaka A, Tanaka K, Inoue I (2008) Genome-wide expression of azoospermia testes demonstrates a specific profile and implicates ART3 in genetic susceptibility. PLoS Genet 4:e26

    Article  PubMed  PubMed Central  Google Scholar 

  • Olarerin-George AO, Anton L, Hwang YC, Elovitz MA, Hogenesch JB (2013) A functional genomics screen for microRNA regulators of NFkappaB signaling. BMC Biol 11. doi:10.1186/1741-7007-11-19

  • Orth JM (1982) Proliferation of Sertoli cells in fetal and postnatal rats: a quantitative autoradiographic study. Anat Rec 203:485–492

    Article  CAS  PubMed  Google Scholar 

  • O’Shaughnessy PJ (2014) Hormonal control of germ cell development and spermatogenesis. Semin Cell Dev Biol 29:55–65

    Article  PubMed  Google Scholar 

  • Ou Y, Dores C, Rodriguez-Sosa JR, van der Hoorn FA, Dobrinski I (2014) Primary cilia in the developing pig testis. Cell Tissue Res 358:597–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panneerdoss S, Chang YF, Buddavarapu KC, Chen HI, Shetty G, Wang H, Chen Y, Kumar TR, Rao MK (2012) Androgen-responsive microRNAs in mouse Sertoli cells. PLoS ONE 7:e41146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papaioannou MD, Nef S (2010) microRNAs in the testis: building up male fertility. J Androl 31:26–33

    Article  CAS  PubMed  Google Scholar 

  • Papaioannou MD, Pitetti JL, Ro S, Park C, Aubry F, Schaad O, Vejnar CE, Kühne F, Descombes P, Zdobnov EM, McManus MT, Guillou F, Harfe BD, Yan W, Jégou B, Nef S (2009) Sertoli cell Dicer is essential for spermatogenesis in mice. Dev Biol 326:250–259

    Article  CAS  PubMed  Google Scholar 

  • Papaioannou MD, Lagarrigue M, Vejnar CE, Rolland AD, Kühne F, Aubry F, Schaad O, Fort A, Descombes P, Neerman-Arbez M, Guillou F, Zdobnov EM, Pineau C, Nef S (2011) Loss of Dicer in Sertoli cells has a major impact on the testicular proteome of mice. Mol Cell Proteomics 10:M900587MCP200

    Article  PubMed  Google Scholar 

  • Pascall JC (1997) Post-transcriptional regulation of gene expression by androgens: recent observations from the epidermal growth factor gene. J Mol Endocrinol 18:177–180

    Article  CAS  PubMed  Google Scholar 

  • Patron JP, Fendler A, Bild M, Jung U, Muller H, Arntzen MØ, Piso C, Stephan C, Thiede B, Mollenkopf HJ, Jung K, Kaufmann SHE, Schreiber J (2012) MiR-133b targets antiapoptotic genes and enhances death receptor-induced apoptosis. PLoS ONE 7:e35345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poongothai J, Gopenath TS, Manonayaki S (2009) Genetics of human male infertility. Singap Med J 50:336–347

    CAS  Google Scholar 

  • Riera MF, Regueira M, Galardo MN, Pellizzari EH, Meroni SB, Cigorraga SB (2012) Signal transduction pathways in FSH regulation of rat Sertoli cell proliferation. Am J Physiol Endocrinol Metab 302:E914–E923

    Article  CAS  PubMed  Google Scholar 

  • Ro S, Park C, Sanders KM, McCarrey JR, Yan W (2007) Cloning and expression profiling of testis-expressed microRNAs. Dev Biol 311:592–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero Y, Meikar O, Papaioannou MD, Conne B, Grey C, Weier M, Pralong F, Massy B, Kaessmann H, Vassalli JD, Kotaja N, Nef S (2011) Dicer1 depletion in male germ cells leads to infertility due to cumulative meiotic and spermiogenic defects. PLoS ONE 6:e25241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahmi M, Nicola ES, Price CA (2006) Hormonal regulation of cytochrome P450 aromatase mRNA stability in non-luteinizing bovine granulosa cells in vitro. J Endocrinol 190:107–115

    Article  CAS  PubMed  Google Scholar 

  • Sharpe RM (2012) Sperm counts and fertility in men: a rocky road ahead. Science & society series on sex and science. EMBO Rep 13:398–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharpe RM, McKinnell C, Kivlin C, Fisher JS (2003) Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 125:769–784

    Article  CAS  PubMed  Google Scholar 

  • Smith LB, Walker WH (2014) The regulation of spermatogenesis by androgens. Semin Cell Dev Biol 30:2–13

    Article  CAS  PubMed  Google Scholar 

  • Smorag L, Zheng Y, Nolte J, Zechner U, Engel W, Pantakani DV (2012) MicroRNA signature in various cell types of mouse spermatogenesis: evidence for stage-specifically expressed miRNA-221, −203 and -34b-5p mediated spermatogenesis regulation. Biol Cell 104:677–692

    Article  CAS  PubMed  Google Scholar 

  • Steinberger A, Steinberger E (1971) Replication pattern of Sertoli cells in maturing rat testis in vivo and organ culture. Biol Reprod 4:84–87

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Ahn HW, Chu T, Bowden W, Gassei K, Orwig K, Rajkovic A (2012) SOHLH1 and SOHLH2 coordinate spermatogonial differentiation. Dev Biol 361:301–312

    Article  CAS  PubMed  Google Scholar 

  • Szczepny A, Hime GR, Loveland KL (2006) Expression of hedgehog signalling components in adult mouse testis. Dev Dyn 235:3063–3070

    Article  CAS  PubMed  Google Scholar 

  • Tan T, Zhang Y, Ji W, Zheng P (2014) miRNA signature in mouse spermatogonial stem cells revealed by high-throughput sequencing. Biomed Res Int. doi:10.1155/2014/154251

  • Tao J, Wu D, Xu B, Qian W, Li P, Lu Q, Yin C, Zhang W (2012) microRNA-133 inhibits cell proliferation, migration and invasion in prostate cancer cells by targeting the epidermal growth factor receptor. Oncol Rep 27:1967–1975

    CAS  PubMed  Google Scholar 

  • Tian S, Huang S, Wub S, Guo W, Li J, He X (2010) MicroRNA-1285 inhibits the expression of p53 by directly targeting its 3′ untranslated region. Biochem Biophys Res Commun 396:435–439

    Article  CAS  PubMed  Google Scholar 

  • van den Driesche S, Sharpe RM, Saunders PT, Mitchell RT (2014) Regulation of the germ stem cell niche as the foundation for adult spermatogenesis: a role for miRNAs? Semin Cell Dev Biol 29:76–83

    Article  PubMed  Google Scholar 

  • Wainwright EN, Jorgensen JS, Kim Y, Truong V, Bagheri-Fam S, Davidson T, Svingen T, Fernandez-Valverde SL, McClelland KS, Taft RJ, Harley VR, Koopman P, Wilhelm D (2013) SOX9 regulates microRNA miR-202-5p/3p expression during mouse testis differentiation. Biol Reprod 89:34

    Article  PubMed  Google Scholar 

  • Walters KA, Simanainen U, Handelsman DJ (2010) Molecular insights into androgen actions in male and female reproductive function from androgen receptor knockout models. Hum Reprod Update 16:543–558

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Yang C, Chen X, Yao B, Yang C, Zhu C, Li L, Wang J, Li X, Shao Y, Liu Y, Ji J, Zhang J, Zen K, Zhang CY, Zhang C (2011) Altered profile of seminal plasma microRNAs in the molecular diagnosis of male infertility. Clin Chem 57:1722–1731

    Article  CAS  PubMed  Google Scholar 

  • Wu QX, Song R, Ortogero N, Zheng HL, Evanoff R, Small CL, Griswold MD, Namekawa SH, Royo H, Turner JM, Yan W (2012) The RNase III. Enzyme DROSHA is essential for MicroRNA production and spermatogenesis. J Biol Chem 287:25173–25190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Bao J, Kim M, Yuan S, Tang C, Zheng H, Mastick GS, Xu C, Yan W (2014) Two miRNA clusters, miR-34b/c and miR-449, are essential for normal brain development, motile ciliogenesis, and spermatogenesis. Proc Natl Acad Sci U S A 111:E2851–E2857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan N, Lu Y, Sun H, Qiu W, Tao D, Liu Y, Chen H, Yang Y, Zhang S, Li X, Ma Y (2009) Microarray profiling of microRNAs expressed in testis tissues of developing primates. J Assist Reprod Genet 26:179–186

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao C, Sun M, Yuan Q, Niu M, Chen Z, Hou J, Wang H, Wen L, LiuY LZ, He Z (2016) MiRNA-133b promotes the proliferation of human Sertoli cells through targeting GLI3. Oncotarget 7:2201–2219

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshida S, Takakura A, Ohbo K, Abe K, Wakabayashi J, Yamamoto M, Suda T, Nabeshima Y (2004) Neurogenin3 delineates the earliest stages of spermatogenesis in the mouse testis. Dev Biol 269:447–458

    Article  CAS  PubMed  Google Scholar 

  • Young JS, Guttman JA, Vaid KS, Vogl AW (2009) Tubulobulbar complexes are intercellular podosome-like structures that internalize intact intercellular junctions during epithelial remodeling events in the rat testis. Biol Reprod 80:162–174

    Article  CAS  PubMed  Google Scholar 

  • Yuan B, Dong R, Shi D, Zhou Y, Zhao Y, Miao M, Jiao B (2011) Down-regulation of miR-23b may contribute to activation of the TGF-β1/Smad3 signalling pathway during the termination stage of liver regeneration. FEBS Lett 585:927–934

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Pan W, Song X, Liu Y, Shao X, Tang Y, Liang D, He D, Wang H, Liu W, Shi Y, Harley JB, Shen N, Qian Y (2012) The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-α. Nat Med 18:1077–1087

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann C, Romero Y, Warnefors M, Bilican A, Borel C, Smith LB, Kotaja N, Kaessmann H, Nef S (2014) Germ cell-specific targeting of DICER or DGCR8 reveals a novel role for endo-siRNAs in the progression of mammalian spermatogenesis and male fertility. PLoS ONE 9:e107023

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz R. de França.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Procópio, M.S., de Avelar, G.F., Costa, G.M.J. et al. MicroRNAs in Sertoli cells: implications for spermatogenesis and fertility. Cell Tissue Res 370, 335–346 (2017). https://doi.org/10.1007/s00441-017-2667-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-017-2667-z

Keywords

Navigation