Skip to main content
Log in

Exploring molecular tools for transformation and gene expression in the cultivated edible mushroom Agrocybe aegerita

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Agrocybe aegerita is a cultivated edible mushroom in numerous countries, which also serves as a model basidiomycete to study fruiting body formation. Aiming to create an easily expandable customised molecular toolset for transformation and constitutive gene of interest expression, we first created a homologous dominant marker for transformant selection. Progeny monokaryons of the genome-sequenced dikaryon A. aegerita AAE-3 used here were identified as sensitive to the systemic fungicide carboxin. We cloned the wild-type gene encoding the iron-sulphur protein subunit of succinate dehydrogenase AaeSdi1 including its up- and downstream regions, and introduced a single-point mutation (His237 to Leu) to make it confer carboxin resistance. PEG-mediated transformation of protoplasts derived from either oidia or vegetative monokaryotic mycelium with the resulting carboxin resistance marker (CbxR) plasmid pSDI1E3 yielded carboxin-resistant transformants in both cases. Plasmid DNA linearised within the selection marker resulted in transformants with ectopic multiple insertions of plasmid DNA in a head-to-tail repeat-like fashion. When circular plasmid was used, ectopic single integration into the fungal genome was favoured, but also gene conversion at the homologous locus was seen in 1 out of 11 analysed transformants. Employing CbxR as selection marker, two versions of a reporter gene construct were assembled via Golden Gate cloning which allows easy recombination of its modules. These consisted of an eGFP expression cassette controlled by the native promoter PAaeGPDII and the heterologous terminator Tnos, once with and once without an intron in front of the eGFP start codon. After protoplast transformation with either construct as circular plasmid DNA, GFP fluorescence was detected with either transformants, indicating that expression of eGFP is intron-independent in A. aegerita. This paves the way for functional genetics approaches to A. aegerita, e.g., via constitutive expression of fruiting-related genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The AaeSDI1 gene sequence employed in this study is available from the NCBI (National Center for Biotechnology Information) GenBank® repository via accession number KU984434. DNA sequence information of AaeSDI1 was obtained via web-based genome browser-mediated access to the in silico-annotated genome sequence of A. aegerita AAE-3 (http://www.thines-lab.senckenberg.de/agrocybe_genome), and the parental dikaryon of the monokaryons A. aegerita AAE-3-13 and A. aegerita AAE-3-32 (Herzog et al. 2016) which were used throughout this study. The genome sequence data of A. aegerita AAE-3 have also been deposited in the European Nucleotide Archive (ENA) under the BioProject accession number PRJEB21917.

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Amore A, Honda Y, Faraco V (2012) Enhanced green fluorescent protein expression in Pleurotus ostreatus for in vivo analysis of fungal laccase promoters. Appl Biochem Biotechnol 168:761–769

    Article  CAS  PubMed  Google Scholar 

  • Böhmer C, Böhmer M, Bölker M, Sandrock B (2008) Cdc42 and the Ste20-like kinase Don3 act independently in triggering cytokinesis in Ustilago maydis. J Cell Sci 121:143–148

    Article  CAS  PubMed  Google Scholar 

  • Brachmann A (2001) Die frühe Infektionsphase von Ustilago maydis: genregulation durch das bW/bE-Heterodimer. PhD Thesis, Fakultät für Biologie, LMU München, Munich, Germany

  • Broomfield PL, Hargreaves JA (1992) A single amino-acid change in the iron-sulphur protein subunit of succinate dehydrogenase confers resistance to carboxin in Ustilago maydis. Curr Genet 22:117–121

    Article  CAS  PubMed  Google Scholar 

  • Burns C, Gregory KE, Kirby M et al (2005) Efficient GFP expression in the mushrooms Agaricus bisporus and Coprinus cinereus requires introns. Fungal Genet Biol 42:191–199

    Article  CAS  PubMed  Google Scholar 

  • Burns C, Leach KM, Elliott TJ, Challen MP, Foster GD, Bailey A (2006) Evaluation of agrobacterium-mediated transformation of Agaricus bisporus using a range of promoters linked to hygromycin resistance. Mol Biotechnol 32:129–138

    Article  CAS  PubMed  Google Scholar 

  • Collins CM, Heneghan MN, Kilaru S, Bailey AM, Foster GD (2010) Improvement of the Coprinopsis cinerea molecular toolkit using new construct design and additional marker genes. J Microbiol Methods 82:156–162

    Article  CAS  PubMed  Google Scholar 

  • de Jong JF, Deelstra HJ, Wösten HAB, Lugones LG (2006) RNA-mediated gene silencing in monokaryons and dikaryons of Schizophyllum commune. Appl Environ Microbiol 72:1267–1269

    Article  PubMed  PubMed Central  Google Scholar 

  • de Jong JF, Ohm RA, de Bekker C, Wösten HAB, Lugones LG (2010) Inactivation of ku80 in the mushroom-forming fungus Schizophyllum commune increases the relative incidence of homologous recombination. FEMS Microbiol Lett 310:91–95

    Article  CAS  PubMed  Google Scholar 

  • Dons JJM, de Vries OMH, Wessels JGH (1979) Characterization of the genome of the basidiomycete Schizophyllum commune. Biochim Biophys Acta 563:100–112

    Article  CAS  PubMed  Google Scholar 

  • Dörnte B, Kües U (2012) Reliability in transformation of the basidiomycete Coprinopsis cinerea. Curr Trends Biotechnol Pharm 6:340–355

    Google Scholar 

  • Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3:e3647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esser K, Meinhardt F (1977) A common genetic control of dikaryotic and monokaryotic fruiting in the basidiomycete Agrocybe aegerita. Mol Gen Genet 155:113–115

    Article  Google Scholar 

  • Fincham JRS (1989) Transformation in fungi. Microbiol Rev 53:148–170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ford KL, Baumgartner K, Henricot B, Bailey AM, Foster GD (2016) A native promoter and inclusion of an intron is necessary for efficient expression of GFP or mRFP in Armillaria mellea. Sci Rep 6:29226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fotheringham S, Holloman WK (1990) Pathways of transformation in Ustilago Maydis determined by DNA conformation. Genetics 124:833–843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia K, Haider MZ, Delteil A et al (2013) Promoter-dependent expression of the fungal transporter HcPT1.1 under Pi shortage and its spatial localization in ectomycorrhiza. Fungal Genet Biol 58–59:53–61

    Article  CAS  PubMed  Google Scholar 

  • Godio RP, Fouces R, Gudina EJ, Martin JF (2004) Agrobacterium tumefaciens-mediated transformation of the antitumor clavaric acid-producing basidiomycete Hypholoma sublateritium. Curr Genet 46:287–294

    Article  CAS  PubMed  Google Scholar 

  • Gupta DK, Rühl M, Mishra B et al (2018) The genome sequence of the commercially cultivated mushroom Agrocybe aegerita reveals a conserved repertoire of fruiting-related genes and a versatile suite of biopolymer-degrading enzymes. BMC Genom 19:48

    Article  CAS  Google Scholar 

  • Gutierrez-Triana JA, Tavhelidse T, Thumberger T et al (2018) Efficient single-copy HDR by 5′ modified long dsDNA donors. eLife 7:e39468

    Article  PubMed  PubMed Central  Google Scholar 

  • Harmsen MC, Schuren FHJ, Moukha SM, Vanzuilen CM, Punt PJ, Wessels JGH (1992) Sequence-analysis of the glyceraldehyde-3-phosphate dehydrogenase genes from the basidiomycetes Schizophyllum commune, Phanerochaete chrysosporium and Agaricus bisporus. Curr Genet 22:447–454

    Article  CAS  PubMed  Google Scholar 

  • Herzog R, Solovyeva I, Rühl M, Thines M, Hennicke F (2016) Dikaryotic fruiting body development in a single dikaryon of Agrocybe aegerita and the spectrum of monokaryotic fruiting types in its monokaryotic progeny. Mycol Progress 15:947–957

    Article  Google Scholar 

  • Honda Y, Matsuyama T, Irie T, Watanabe T, Kuwahara M (2000) Carboxin resistance transformation of the homobasidiomycete fungus Pleurotus ostreatus. Curr Genet 37:209–212

    Article  CAS  PubMed  Google Scholar 

  • Irie T, Sato T, Saito K et al (2003) Construction of a homologous selectable marker gene for Lentinula edodes transformation. Biosci Biotechnol Biochem 67:2006–2009

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Muraguchi H, Seshime Y, Oita S, Yanagi SO (2004) Flutolanil and carboxin resistance in Coprinus cinereus conferred by a mutation in the cytochrome b560 subunit of succinate dehydrogenase complex (Complex II). Mol Genet Genom 272:328–335

    Article  CAS  Google Scholar 

  • Kearse M, Moir R, Wilson A et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Keon JP, White GA, Hargreaves JA (1991) Isolation, characterization and sequence of a gene conferring resistance to the systemic fungicide carboxin from the maize smut pathogen, Ustilago maydis. Curr Genet 19:475–481

    Article  CAS  PubMed  Google Scholar 

  • Kilaru S, Collins CM, Hartley JH, Burns C, Foster GD, Bailey AM (2009) Investigating dominant selection markers for Coprinopsis cinerea: a carboxin resistance system and re-evaluation of hygromycin and phleomycin resistance vectors. Curr Genet 55:543–550

    Article  CAS  PubMed  Google Scholar 

  • Kleofas V, Sommer L, Fraatz MA, Zorn H, Rühl M (2014) Fruiting body production and aroma profile analysis of Agrocybe aegerita cultivated on different substrates. Nat Resour 5:233–240

    Google Scholar 

  • Kües U (2000) Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol Mol Biol Rev 64:316–353

    Article  PubMed  PubMed Central  Google Scholar 

  • Labarère J, Noël T (1992) Mating type switching in the tetrapolar basidiomycete Agrocybe aegerita. Genetics 131:307–319

    PubMed  PubMed Central  Google Scholar 

  • Lorang JM, Tuori RP, Martinez JP et al (2001) Green fluorescent protein is lighting up fungal biology. Appl Environ Microbiol 67:1987–1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugones LG, Scholtmeijer K, Klootwijk R, Wessels JGH (1999) Introns are necessary for mRNA accumulation in Schizophyllum commune. Mol Microbiol 32:681–689

    Article  CAS  PubMed  Google Scholar 

  • Ma B, Mayfield MB, Gold MH (2001) The green fluorescent protein gene functions as a reporter of gene expression in Phanerochaete chrysosporium. Appl Environ Microbiol 67:948–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meinhardt F, Esser K (1981) Genetic studies of the basidiomycete Agrocybe aegerita. 2. Genetic control of fruit body formation and its practical implications. Theor Appl Genet 60:265–268

    Article  CAS  PubMed  Google Scholar 

  • Meinhardt F, Leslie F (1982) Mating Types of Agrocybe aegerita. Curr Genet 5:65–68

    Article  CAS  PubMed  Google Scholar 

  • Mooibroek H, Kuipers AG, Sietsma JH, Punt PJ, Wessels JG (1990) Introduction of hygromycin B resistance into Schizophyllum commune: preferential methylation of donor DNA. Mol Gen Genet 222:41–48

    CAS  PubMed  Google Scholar 

  • Müller T, Benjdia M, Avolio M et al (2006) Functional expression of the green fluorescent protein in the ectomycorrhizal model fungus Hebeloma cylindrosporum. Mycorrhiza 16:437–442

    Article  CAS  PubMed  Google Scholar 

  • Noël T, Labarère J (1992) Sequence of the URA1 gene encoding dihydroorotate dehydrogenase from the basidiomycete fungus Agrocybe aegerita. Gene 122:233–234

    Article  PubMed  Google Scholar 

  • Noël T, Labarère J (1994) Homologous transformation of the edible basidiomycete Agrocybe aegerita with the URA1 gene: characterization of integrative events and of rearranged free plasmids in transformants. Curr Genet 25:432–437

    Article  PubMed  Google Scholar 

  • Noël T, Simoneau P, Labarère J (1995) Heterologous transformation of Agrocybe aegerita with a bacterial neomycin-resistance gene fused to a fungal promoter-like DNA sequence. Theor Appl Genet 90:1019–1027

    Article  PubMed  Google Scholar 

  • Ohm RA, de Jong JF, Lugones LG et al (2010) Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol 28:957–963

    Article  CAS  PubMed  Google Scholar 

  • Okuda Y, Murakami S, Honda Y, Matsumoto T (2013) An MSH4 homolog. stpp1, from Pleurotus pulmonarius Is a “silver bullet” for resolving problems caused by spores in cultivated mushrooms. Appl Environ Microbiol 79:4520–4527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sato M, Kurahashi A, Nishibori K, Fujimori F (2014) Development of a transformation system for the edible mushroom Grifola frondosa: demonstrating heterologous gene expression and RNAi-mediated gene silencing. Mycoscience 56:364–372

    Article  CAS  Google Scholar 

  • Scholtmeijer K, Wösten HAB, Springer J, Wessels JG (2001) Effect of introns and AT-rich sequences on expression of the bacterial hygromycin B resistance gene in the basidiomycete Schizophyllum commune. Appl Environ Microbiol 67:481–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi L, Fang X, Li M et al (2012) Development of a simple and efficient transformation system for the basidiomycetous medicinal fungus Ganoderma lucidum. World J Microbiol Biotechnol 28:283–291

    Article  PubMed  Google Scholar 

  • Sirand-Pugnet P, Santos C, Labarère J (2003) The Aa-Pri4 gene, specifically expressed during fruiting initiation in the Agrocybe aegerita complex, contains an unusual CT-rich leader intron within the 5′ uncoding region. Curr Genet 44:124–131

    Article  CAS  PubMed  Google Scholar 

  • Sugano SS, Suzuki H, Shimokita E et al (2017) Genome editing in the mushroom-forming basidiomycete Coprinopsis cinerea, optimized by a high-throughput transformation system. Sci Rep 7:1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terfrüchte M, Joehnk B, Fajardo-Somera R et al (2014) Establishing a versatile Golden Gate cloning system for genetic engineering in fungi. Fungal Genet Biol 62:1–10

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhart M, Piscera JM, Albertó E (2008) Utilization of new naturally occurring strains and supplementation to improve the biological efficiency of the edible mushroom Agrocybe cylindracea. J Ind Microbiol Biotechnol 35:595–602

    Article  CAS  PubMed  Google Scholar 

  • van Peer AF, de Bekker C, Vinck A, Wösten HA, Lugones LG (2009) Phleomycin increases transformation efficiency and promotes single integrations in Schizophyllum commune. Appl Environ Microbiol 75:1243–1247

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Gu B, Huang J et al (2013) Transcriptome and proteome exploration to provide a resource for the study of Agrocybe aegerita. PLoS One 8:e56686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the Senckenberg Gesellschaft für Naturforschung and the Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz (LOEWE) by the State of Hesse’s Ministry of Higher Education, Research and the Arts. Dr. Michael Bölker was supported by the DFG-funded SFB 987 ‘Microbial Diversity in Environmental Signal Response’. DNA sequence data were obtained from the genome sequence of Agrocybe aegerita AAE-3 (Gupta et al. 2018; http://www.thines-lab.senckenberg.de/agrocybe_genome), the parental dikaryon of the monokaryons A. aegerita AAE-3-13 and A. aegerita AAE-3-32, which were used throughout this study. We thank Dr. Björn Sandrock (Philipps-University Marburg, Germany) for fruitful exchange of ideas on the modes of plasmid-chromosomal integration of pSDI1E3 (carboxin resistance cassette-containing plasmid created in this study) in A. aegerita.

Funding

This study was funded by the Senckenberg Gesellschaft für Naturforschung and the Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz (LOEWE) by the State of Hesse’s Ministry of Higher Education, Research and the Arts. Dr. Michael Bölker was supported by the DFG-funded SFB 987 ‘Microbial Diversity in Environmental Signal Response’.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: RH, IS, and FH. Performed the experiments: RH, IS, and FH. Analysed the data: RH, IS, LGL, and FH. Wrote the paper: RH, IS, MB, LGL, and FH.

Corresponding author

Correspondence to Florian Hennicke.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Additional information

Communicated by Reinhard Fischer.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herzog, R., Solovyeva, I., Bölker, M. et al. Exploring molecular tools for transformation and gene expression in the cultivated edible mushroom Agrocybe aegerita. Mol Genet Genomics 294, 663–677 (2019). https://doi.org/10.1007/s00438-018-01528-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-018-01528-6

Keywords

Navigation