Skip to main content

Advertisement

Log in

Progress in gene therapy using oncolytic vaccinia virus as vectors

  • Review – Clinical Oncology
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Vaccinia virus was widely used in the World Health Organization’s smallpox eradication campaign and is currently a promising vector for gene therapy owing to its unique characteristics. Vaccinia virus can selectively replicate and propagate productively in tumor cells, resulting in oncolysis. In addition, rapid viral particle production, wide host range, large genome size (approximately 200 kb), and safe handling render vaccinia virus a suitable vector for gene therapy.

Materials and methods

Cancer vaccines and gene therapy are being studied in clinical trials and experiment researches. However, we put forward unique challenges of optimal selection of foreign genes, administration and modification of VACV, personalized medicine, and other existing problems, based on current researches and our own experiments.

Conclusion

This review presents an overview of the vaccinia virus from its mechanisms to medical researches and clinical trials. We believe that the solution to these problems will contribute to understanding mechanisms of VACV and provide a theoretical basis for clinical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

VACV:

Vaccinia virus

WR:

Western reserve

VTT:

Vaccinia virus Tian Tan strain

TK:

Thymidine tyrosine kinase

GM–CSF:

Granulocyte–macrophage colony stimulating factor

MVA:

Modified vaccinia Ankara

CD:

Cytosinedeaminase

5-FU:

5-fluorouracil

RNAi:

RNA interference

siRNA:

Short interfering double-stranded RNA

shRNA:

Short hairpin RNA

References

  • Bartlett DL, Liu Z, Sathaiah M et al (2013) Oncolytic viruses as therapeutic cancer vaccines. Mol Cancer 12(1):103

    Article  PubMed  PubMed Central  Google Scholar 

  • Bennink JR, Yewdell JW, Smith GL et al (1984) Recombinant vaccinia virus primes and stimulates influenza haemagglutinin-specific cytotoxic T cells. Nature 311(5986):578–579

    Article  CAS  PubMed  Google Scholar 

  • Breitbach CJ, Burke J, Jonker D et al (2011) Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature 477(7362):99–102

    Article  CAS  PubMed  Google Scholar 

  • Chalikonda S, Kivlen MH, O’Malley ME et al (2008) Oncolytic virotherapy for ovarian carcinomatosis using a replication-selective vaccinia virus armed with a yeast cytosine deaminase gene. Cancer Gene Ther 15(2):115–125

    Article  CAS  PubMed  Google Scholar 

  • Chan WM, Mcfadden G (2014) Oncolytic poxviruses. Ann Rev Virol 1(1):119

    Google Scholar 

  • Clark R, Kenyon J, Bartlett N et al (2006) Deletion of gene A41L enhances vaccinia virus immunogenicity and vaccine efficacy. J Gen Virol 87(1):29–38

    Article  CAS  PubMed  Google Scholar 

  • Clercq ED (2010) Historical perspectives in the development of antiviral agents against poxviruses. Viruses 2(6):1322–1339

    Article  PubMed  PubMed Central  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng L, Fan J, Guo M et al (2016) Oncolytic and immunologic cancer therapy with GM–CSF-armed vaccinia virus of Tian Tan strain Guang9. Cancer Lett 372(2):251

    Article  CAS  PubMed  Google Scholar 

  • Downscanner S, Zong SG, Ravindranathan R et al (2016) Phase 1 study of intravenous oncolytic poxvirus (vvDD) in patients with advanced solid cancers. Mol Ther J Am Soc Gene Ther 24(8):1492–1501

    Article  CAS  Google Scholar 

  • Fend L, Remy-Ziller C, Foloppe J et al (2016) Oncolytic virotherapy with an armed vaccinia virus in an orthotopic model of renal carcinoma is associated with modification of the tumor microenvironment. Oncoimmunology 5(2):e1080414

    Article  PubMed  Google Scholar 

  • Foloppe J, Kintz JN, Findeli A et al (2008) Targeted delivery of a suicide gene to human colorectal tumors by a conditionally replicating vaccinia virus. Gene Ther 15(20):1361

    Article  CAS  PubMed  Google Scholar 

  • Fu G, Lin XQ, Fan Y et al (2005) RNA interference remarkably suppresses bcl-2 gene expression in cancer cells in vitro and in vivo. Cancer Biol Ther 4(8):822–829

    Article  CAS  PubMed  Google Scholar 

  • Fukuhara H, Ino Y, Todo T (2016) Oncolytic virus therapy: a new era of cancer treatment at dawn. Cancer Sci 107(10):1373–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garber DA, O’Mara LA, Gangadhara S et al (2012) Deletion of specific immune-modulatory genes from modified vaccinia virus Ankara-based HIV vaccines engenders improved immunogenicity in rhesus macaques. J Virol 86(23):12605–12615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo ZS, Bartlett DL (2014) Oncolytic viruses as platform for multimodal cancer therapeutics: a promising land. Cancer Gene Ther 21(7):261–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guse K, Cerullo V, Hemminki A (2011) Oncolytic vaccinia virus for the treatment of cancer. Expert Opin Biol Ther 11(5):595–608

    Article  CAS  PubMed  Google Scholar 

  • Henderson DA (1988) Smallpox and its eradication. World Health Organization, Geneva

    Google Scholar 

  • Hengstschläger M, Knöfler M, Müllner EW et al (1994) Different regulation of thymidine kinase during the cell cycle of normal versus DNA tumor virus-transformed cells. J Biol Chem 269(19):13836–13842

    PubMed  Google Scholar 

  • Hensbergen PJ, Wijnands PG, Schreurs MW et al (2005) The CXCR3 targeting chemokine CXCL11 has potent antitumor activity in vivo involving attraction of CD8 + T lymphocytes but not inhibition of angiogenesis. J Immunother 28(4):343

    Article  CAS  PubMed  Google Scholar 

  • Heo J, Reid T, Ruo L et al (2013) Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med 19(3):329–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou W, Sampath P, Rojas JJ et al (2016) Oncolytic virus-mediated targeting of PGE2 in the tumor alters the immune status and sensitizes established and resistant tumors to immunotherapy. Cancer Cell 30(1):108–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izutsu T, Konda R, Sugimura J et al (2011) Brain-specific angiogenesis inhibitor 1 is a putative factor for inhibition of neovascular formation in renal cell carcinoma. J Urol 185(6):2353–2358

    Article  CAS  PubMed  Google Scholar 

  • Kanegane C, Sgadari C, Kanegane H et al (1998) Contribution of the CXC chemokines IP-10 and Mig to the antitumor effects of IL-12. J Leukoc Biol 64(3):384–392

    Article  CAS  PubMed  Google Scholar 

  • Kaufman HL, Flanagan K, Lee CS et al (2002) Insertion of interleukin-2 (IL-2) and interleukin-12 (IL-12) genes into vaccinia virus results in effective anti-tumor responses without toxicity. Vaccine 20(13–14):1862–1869

    Article  CAS  PubMed  Google Scholar 

  • Kaufman HL, Kohlhapp FJ, Zloza A (2015) Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov 14(9):642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Oh JY, Park BH et al (2006) Systemic armed oncolytic and immunologic therapy for cancer with JX-594, a targeted poxvirus expressing GM–CSF. Mol Ther 14(3):361–370

    Article  CAS  PubMed  Google Scholar 

  • Kirn DH, Thorne SH (2009) Targeted and armed oncolytic poxviruses: a novel multi-mechanistic therapeutic class for cancer. Nat Rev Cancer 9(1):64–71

    Article  CAS  PubMed  Google Scholar 

  • Kirn D, Martuza RL, Zwiebel J (2001) Replication-selective virotherapy for cancer: biological principles, risk management and future directions. Nat Med 7(7):781–787

    Article  CAS  PubMed  Google Scholar 

  • Kirn DH, Wang Y, Boeuf FL et al (2007) Targeting of interferon-beta to produce a specific, multi-mechanistic oncolytic vaccinia virus. Plos Med 4(12):e353

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwa S, Lai L, Gangadhara S et al (2014) CD40L-adjuvanted DNA/modified vaccinia virus Ankara simian immunodeficiency virus SIV239 vaccine enhances SIV-specific humoral and cellular immunity and improves protection against a heterologous SIVE660 mucosal challenge. J Virol 88(17):9579–9589

    Article  PubMed  PubMed Central  Google Scholar 

  • Laure A (2016) Oncolytic viruses as immunotherapy: progress and remaining challenges. Oncotargets Ther 9:2627

    Google Scholar 

  • Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88(3):323–331

    Article  CAS  PubMed  Google Scholar 

  • Li J, O’Malley M, Urban J et al (2011) Chemokine expression from oncolytic vaccinia virus enhances vaccine therapies of cancer. Mol Ther J Am Soc Gene Ther 19(4):650–657

    Article  Google Scholar 

  • Liu S, Dai M, You L et al (2013) Advance in herpes simplex viruses for cancer therapy. Sci China 56(4):298–305

    Article  CAS  Google Scholar 

  • Liu Z, Ravindranathan R, Li J et al (2016) CXCL11-Armed oncolytic poxvirus elicits potent antitumor immunity and shows enhanced therapeutic efficacy. Oncoimmunology 5(3):e1091554

    Article  PubMed  Google Scholar 

  • Mackett M, Smith GL, Moss B (1982) Vaccinia virus: a selectable eukaryotic cloning and expression vector. Proc Natl Acad Sci USA 79(23):7415–7419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mccart JA, Ward JM, Lee J et al (2001) Systemic cancer therapy with a tumor-selective vaccinia virus mutant lacking thymidine kinase and vaccinia growth factor genes. Cancer Res 1(24):8751–8757

    Google Scholar 

  • Newman W, Southam CM (1954) Virus treatment in advanced cancer; a pathological study of fifty-seven cases. Cancer 7(1):106–118

    Article  CAS  PubMed  Google Scholar 

  • Okoli A, Okeke MI, Tryland M et al (2018) CRISPR/Cas9—advancing orthopoxvirus genome editing for vaccine and vector development. Viruses 10(1):50

    Article  PubMed Central  Google Scholar 

  • Parato KA, Breitbach CJ, Boeuf FL et al (2012) The oncolytic poxvirus JX-594 selectively replicates in and destroys cancer cells driven by genetic pathways commonly activated in cancers. Mol Ther 20(4):749

    Article  CAS  PubMed  Google Scholar 

  • Pearce L, Rivers TM (1927) Effect of host immunity to a filterable virus (virus III) on the growth and malignancy of a transplantable rabbit neoplasm. J Exp Med 46(1):65–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojas JJ, Thorne SH (2012) Theranostic potential of oncolytic vaccinia virus. Theranostics 2(4):363–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholl SM, Balloul JM, Le GG et al (2000) Recombinant vaccinia virus encoding human MUC1 and IL2 as immunotherapy in patients with breast cancer. J Immunother 23(5):570

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Nemunaitis J (2005) Fighting cancer with vaccinia virus: teaching new tricks to an old dog. Mol Ther J Am Soc Gene Ther 11(2):180–195

    Article  CAS  Google Scholar 

  • Southam CM, Moore AE (1952) Clinical studies of viruses as antineoplastic agents with particular reference to Egypt 101 virus. Cancer 5(5):1025–1034

    Article  CAS  PubMed  Google Scholar 

  • Suryawanshi YR, Zhang T, Essani K (2017) Oncolytic viruses: emerging options for the treatment of breast cancer. Med Oncol 34(3):43

    Article  PubMed  Google Scholar 

  • Sutter G, Staib C (2003) Vaccinia vectors as candidate vaccines: the development of modified vaccinia virus Ankara for antigen delivery. Curr Drug Targets Infect Disord 3(3):263–271

    Article  CAS  PubMed  Google Scholar 

  • Sze DY, Reid TR, Rose SC (2013) Oncolytic virotherapy. J Vasc Interv Radiol 24(8):1115–1122

    Article  PubMed  Google Scholar 

  • Thorne SH (2011) Immunotherapeutic potential of oncolytic vaccinia virus. Immunol Res 50(2–3):286–293

    Article  CAS  PubMed  Google Scholar 

  • Thorne SH, Hwang TH, O’Gorman WE et al (2007) Rational strain selection and engineering creates a broad-spectrum, systemically effective oncolytic poxvirus, JX-963. J Clin Investig 117(11):3350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker JD, Sehgal I, Kousoulas KG (2011) Oncolytic herpes simplex virus 1 encoding 15-prostaglandin dehydrogenase mitigates immune suppression and reduces ectopic primary and metastatic breast cancer in mice. J Virol 85(14):7363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zhu H, Quan L et al (2005) Downregulation of survivin by RNAi inhibits the growth of esophageal carcinoma cells. Cancer Biol Ther 4(9):974–978

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Yan X, Guo Q et al (2015) Deficiency of caspase 3 in tumor xenograft impairs therapeutic effect of measles virus Edmoston strain. Oncotarget 6(18):16019–16030

    PubMed  PubMed Central  Google Scholar 

  • Wang T, Yin H, Li Y et al (2017) Vaccination with recombinant adenovirus expressing multi-stage antigens of Toxoplasma gondii by the mucosal route induces higher systemic cellular and local mucosal immune responses than with other vaccination routes. Parasite J Soc Fr Parasitol 24:12

    Google Scholar 

  • Wyatt LS, Earl PL, Eller LA et al (2004) Highly attenuated smallpox vaccine protects mice with and without immune deficiencies against pathogenic vaccinia virus challenge. Proc Natl Acad Sci USA 101(13):4590–4595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yano J, Hirabayashi K, Nakagawa S et al (2004) Antitumor activity of small interfering RNA/cationic liposome complex in mouse models of cancer. Clin Cancer Res 10(22):7721

    Article  CAS  PubMed  Google Scholar 

  • Yoo NJ, Kim HS, Kim SY et al (2003) Immunohistochemical analysis of Smac/DIABLO expression in human carcinomas and sarcomas. Apmis 111(4):382–388

    Article  CAS  PubMed  Google Scholar 

  • Yu F, Wang X, Guo ZS et al (2014) T-cell engager-armed oncolytic vaccinia virus significantly enhances antitumor therapy. Mol Ther J Am Soc Gene Ther 22(1):102

    Article  CAS  Google Scholar 

  • Yuan M, Zhang W, Wang J et al (2015a) Efficiently editing the vaccinia virus genome by using the CRISPR-Cas9 system. J Virol 89(9):5176–5179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan M, Gao X, Chard LS et al (2015b) A marker-free system for highly efficient construction of vaccinia virus vectors using CRISPR Cas9. Mol Ther Methods Clin Dev 2(C):15035

    Article  PubMed  PubMed Central  Google Scholar 

  • Zamarin D, Palese P (2012) Oncolytic Newcastle disease virus for cancer therapy: old challenges and new directions. Future Microbiol 7(3):347–367

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Yu YA, Wang E et al (2007) Eradication of solid human breast tumors in nude mice with an intravenously injected light-emitting oncolytic vaccinia virus. Can Res 67(20):10038–10046

    Article  CAS  Google Scholar 

  • Zhang Q, Liang C, Yu YA et al (2009) The highly attenuated oncolytic recombinant vaccinia virus GLV-1h68: comparative genomic features and the contribution of F14.5L inactivation. Mol Genet Genom 282(4):417–435

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thanked Jie Liu for the literature search.

Funding

This study was supported by National Natural Science Foundation of China (81703061).

Author information

Authors and Affiliations

Authors

Contributions

XY and BH did the data analysis and interpretation, and manuscript writing; LD did collection and assembly of data; ZH did the conception/design, provision of study material or patients, and final approval of manuscript.

Corresponding author

Correspondence to Zhigang Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This manuscript does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Huang, B., Deng, L. et al. Progress in gene therapy using oncolytic vaccinia virus as vectors. J Cancer Res Clin Oncol 144, 2433–2440 (2018). https://doi.org/10.1007/s00432-018-2762-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-018-2762-x

Keywords

Navigation