Skip to main content
Log in

Recombinant Strains of Oncolytic Vaccinia Virus for Cancer Immunotherapy

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Cancer virotherapy is an alternative therapeutic approach based on the viruses that selectively infect and kill tumor cells. Vaccinia virus (VV) is a member of the Poxviridae, a family of enveloped viruses with a large linear double-stranded DNA genome. The proven safety of the VV strains as well as considerable transgene capacity of the viral genome, make VV an excellent platform for creating recombinant oncolytic viruses for cancer therapy. Furthermore, various genetic modifications can increase tumor selectivity and therapeutic efficacy of VV by arming it with the immune-modulatory genes or proapoptotic molecules, boosting the host immune system, and increasing cross-priming recognition of the tumor cells by T-cells or NK cells. In this review, we summarized the data on bioengineering approaches to develop recombinant VV strains for enhanced cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CD:

cluster of differentiation

CEA:

carcinoembryonic antigen

CTL:

cytotoxic T lymphocyte

CTLA-4:

Cytotoxic T-lymphocyte associated protein 4

EEV:

extracellular enveloped virus

EGF:

epidermal growth factor

GM-CSF:

granulocyte/macrophage colony-stimulating factor

ITIM:

immunoreceptor tyrosine-based inhibitory motif

IFN:

interferon

IgG:

immunoglobulin G

IL:

interleukin

MAPK:

mitogen activated protein kinase

MLKL:

mixed lineage kinase domain-like

MUC1:

Mucin 1

DC:

dendritic cells

MVA:

Modified Vaccinia Virus Ankara

NF-kB:

Nuclear factor kappa B

NK:

Natural killer

OV:

oncolytic virus

PD-1:

programmed death-1

PD-L1:

Programmed death ligand-1

PDAC:

pancreatic ductal adenocarcinoma

Th1/2:

T helper1/2

TIGIT:

T-cell immunoglobulin and ITIM domain

TK:

thymidine kinase

TME:

Tumor microenvironment

TNF:

Tumour Necrosis Factor

Treg:

regulatory T cells

VGF:

vaccinia growth factor

VV:

vaccinia virus

VEGF:

Vascular endothelial growth factor

WR:

Western Reserve

References

  1. Carter, G. C., Law, M., Hollinshead, M., and Smith, G. L. (2005) Entry of the vaccinia virus intracellular mature virion and its interactions with glycosaminoglycans, J. Gen. Virol., 86, 1279-1290, https://doi.org/10.1099/vir.0.80831-0.

    Article  CAS  PubMed  Google Scholar 

  2. Roberts, K. L., and Smith, G. L. (2008) Vaccinia virus morphogenesis and dissemination, Trends Microbiol., 16, 472-479, https://doi.org/10.1016/j.tim.2008.07.009.

    Article  CAS  PubMed  Google Scholar 

  3. Levaditi, C., and Nicolau, S. (1922) On the culture of the vaccinal virus in epithelial neoplasia [in French], CR Soc. Biol., 86, 928.

    Google Scholar 

  4. Guse, K., Cerullo, V., and Hemminki, A. (2011) Oncolytic vaccinia virus for the treatment of cancer, Expert Opin. Biol. Ther., 11, 595-608, https://doi.org/10.1517/14712598.2011.558838.

    Article  CAS  PubMed  Google Scholar 

  5. Schlom, J. (2012) Therapeutic cancer vaccines: current status and moving forward, J. Natl. Cancer Inst., 104, 599-613, https://doi.org/10.1093/jnci/djs033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fenner, F. (1989) Risks and benefits of vaccinia vaccine use in the worldwide smallpox eradication campaign, Res. Virol., 140, 465-466; discussion 487-491, https://doi.org/10.1016/s0923-2516(89)80126-8.

    Article  CAS  PubMed  Google Scholar 

  7. Fenner, F. (1993) Smallpox: emergence, global spread, and eradication, Hist. Philos. Life Sci., 15, 397-420.

    CAS  PubMed  Google Scholar 

  8. Thorne, S. H., Bartlett, D. L., and Kirn, D. H. (2005) The use of oncolytic vaccinia viruses in the treatment of cancer: a new role for an old ally? Curr. Gene Ther., 5, 429-443, https://doi.org/10.2174/1566523054546215.

    Article  CAS  PubMed  Google Scholar 

  9. Hermiston, T. (2000) Gene delivery from replication-selective viruses: arming guided missiles in the war against cancer, J. Clin. Invest., 105, 1169-1172, https://doi.org/10.1172/JCI9973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thorne, S. H., Hwang, T. H., and Kirn, D. H. (2005) Vaccinia virus and oncolytic virotherapy of cancer, Curr. Opin. Mol. Ther., 7, 359-365.

    PubMed  Google Scholar 

  11. Gammon, D. B., Gowrishankar, B., Duraffour, S., Andrei, G., Upton, C., and Evans, D. H. (2010) Vaccinia virus-encoded ribonucleotide reductase subunits are differentially required for replication and pathogenesis, PLoS Pathog., 6, e1000984, https://doi.org/10.1371/journal.ppat.1000984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, L. C., Lynn, R. C., Cheng, G., Alexander, E., Kapoor, V., Moon, E. K., Sun, J., Fridlender, Z. G., Isaacs, S. N., Thorne, S. H., and Albelda, S. M. (2012) Treating tumors with a vaccinia virus expressing IFNβ illustrates the complex relationships between oncolytic ability and immunogenicity, Mol. Ther., 20, 736-748, https://doi.org/10.1038/mt.2011.228.

    Article  CAS  PubMed  Google Scholar 

  13. Thorne, S. H. (2012) Next-generation oncolytic vaccinia vectors, Methods Mol. Biol., 797, 205-215, https://doi.org/10.1007/978-1-61779-340-0_14.

    Article  CAS  PubMed  Google Scholar 

  14. Smith, G. L., Benfield, C. T. O., Maluquer de Motes, C., Mazzon, M., Ember, S. W. J., Ferguson, B. J., and Sumner, R. P. (2013) Vaccinia virus immune evasion: mechanisms, virulence and immunogenicity, J. Gen. Virol., 94, 2367-2392, https://doi.org/10.1099/vir.0.055921-0.

    Article  CAS  PubMed  Google Scholar 

  15. Hu, W., Wang, G., Huang, D., Sui, M., and Xu, Y. (2019) Cancer immunotherapy based on natural killer cells: current progress and new opportunities, Front. Immunol., 10, 1205, https://doi.org/10.3389/fimmu.2019.01205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kirwan, S., Merriam, D., Barsby, N., McKinnon, A., and Burshtyn, D. N. (2006) Vaccinia virus modulation of natural killer cell function by direct infection, Virology, 347, 75-87, https://doi.org/10.1016/j.virol.2005.11.037.

    Article  CAS  PubMed  Google Scholar 

  17. Chisholm, S. E., and Reyburn, H. T. (2006) Recognition of vaccinia virus-infected cells by human natural killer cells depends on natural cytotoxicity receptors, J. Virol., 80, 2225-2233, https://doi.org/10.1128/JVI.80.5.2225-2233.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Benfield, C. T. O., Ren, H., Lucas, S. J., Bahsoun, B., and Smith, G. L. (2013) Vaccinia virus protein K7 is a virulence factor that alters the acute immune response to infection, J. Gen. Virol., 94, 1647-1657, https://doi.org/10.1099/vir.0.052670-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, F., Sheng, Y., Hou, W., Sampath, P., Byrd, D., Thorne, S., and Zhang, Y. (2020) CCL5-armed oncolytic virus augments CCR5-engineered NK cell infiltration and antitumor efficiency, J. Immunother. Cancer, 8, e000131, https://doi.org/10.1136/jitc-2019-000131.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Karupiah, G., Coupar, B. E., Andrew, M. E., Boyle, D. B., Phillips, S. M., Mullbacher, A., Blanden, R. V., and Ramshaw, I. A. (1990) Elevated natural killer cell responses in mice infected with recombinant vaccinia virus encoding murine IL-2, J. Immunol., 144, 290-298.

    Article  CAS  PubMed  Google Scholar 

  21. McKenzie, R., Kotwal, G. J., Moss, B., Hammer, C. H., and Frank, M. M. (1992) Regulation of complement activity by vaccinia virus complement-control protein, J. Infect. Dis., 166, 1245-1250, https://doi.org/10.1093/infdis/166.6.1245.

    Article  CAS  PubMed  Google Scholar 

  22. Girgis, N. M., Dehaven, B. C., Xiao, Y., Alexander, E., Viner, K. M., and Isaacs, S. N. (2011) The Vaccinia virus complement control protein modulates adaptive immune responses during infection, J. Virol., 85, 2547-2556, https://doi.org/10.1128/JVI.01474-10.

    Article  CAS  PubMed  Google Scholar 

  23. Isaacs, S. N., Kotwal, G. J., and Moss, B. (1992) Vaccinia virus complement-control protein prevents antibody-dependent complement-enhanced neutralization of infectivity and contributes to virulence, Proc. Natl. Acad. Sci. USA, 89, 628-632, https://doi.org/10.1073/pnas.89.2.628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jefferson, A., Cadet, V. E., and Hielscher, A. (2015) The mechanisms of genetically modified vaccinia viruses for the treatment of cancer, Crit. Rev. Oncol. Hematol., 95, 407-416, https://doi.org/10.1016/j.critrevonc.2015.04.001.

    Article  PubMed  Google Scholar 

  25. Thorne, S. H. (2011) Immunotherapeutic potential of oncolytic vaccinia virus, Immunol. Res., 50, 286-293, https://doi.org/10.1007/s12026-011-8211-4.

    Article  CAS  PubMed  Google Scholar 

  26. Bowie, A., Kiss-Toth, E., Symons, J. A., Smith, G. L., Dower, S. K., and O’Neill, L. A. (2000) A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling, Proc. Natl. Acad. Sci. USA, 97, 10162-10167, https://doi.org/10.1073/pnas.160027697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alcami, A., Symons, J. A., and Smith, G. L. (2000) The vaccinia virus soluble alpha/beta interferon (IFN) receptor binds to the cell surface and protects cells from the antiviral effects of IFN, J. Virol., 74, 11230-11239, https://doi.org/10.1128/jvi.74.23.11230-11239.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kirn, D. H., Wang, Y., Le Boeuf, F., Bell, J., and Thorne, S. H. (2007) Targeting of interferon-beta to produce a specific, multi-mechanistic oncolytic vaccinia virus, PLoS Med., 4, e353, https://doi.org/10.1371/journal.pmed.0040353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gerlic, M., Faustin, B., Postigo, A., Yu, E. C., Proell, M., Gombosuren, N., Krajewska, M., Flynn, R., Croft, M., Way, M., Satterthwait, A., Liddington, R. C., Salek-Ardakani, S., Matsuzawa, S., and Reed, J. C. (2013) Vaccinia virus F1L protein promotes virulence by inhibiting inflammasome activation, Proc. Natl. Acad. Sci. USA, 110, 7808-7813, https://doi.org/10.1073/pnas.1215995110.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Symons, J. A., Adams, E., Tscharke, D. C., Reading, P. C., Waldmann, H., and Smith, G. L. (2002) The vaccinia virus C12L protein inhibits mouse IL-18 and promotes virus virulence in the murine intranasal model, J. Gen. Virol., 83, 2833-2844, https://doi.org/10.1099/0022-1317-83-11-2833.

    Article  CAS  PubMed  Google Scholar 

  31. Alcamí, A., Symons, J. A., Collins, P. D., Williams, T. J., and Smith, G. L. (1998) Blockade of chemokine activity by a soluble chemokine binding protein from vaccinia virus, J. Immunol., 160, 624-633.

    Article  PubMed  Google Scholar 

  32. Lehmann, M. H., Kastenmuller, W., Kandemir, J. D., Brandt, F., Suezer, Y., and Sutter, G. (2009) Modified vaccinia virus ankara triggers chemotaxis of monocytes and early respiratory immigration of leukocytes by induction of CCL2 expression, J. Virol., 83, 2540-2552, https://doi.org/10.1128/JVI.01884-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alejo, A., Ruiz-Argüello, M. B., Ho, Y., Smith, V. P., Saraiva, M., and Alcami, A. (2006) A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus, Proc. Natl. Acad. Sci. USA, 103, 5995-6000, https://doi.org/10.1073/pnas.0510462103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ylosmaki, E., and Cerullo, V. (2020) Design and application of oncolytic viruses for cancer immunotherapy, Curr. Opin. Biotechnol., 65, 25-36, https://doi.org/10.1016/j.copbio.2019.11.016.

    Article  CAS  PubMed  Google Scholar 

  35. Guse, K., Sloniecka, M., Diaconu, I., Ottolino-Perry, K., Tang, N., Ng, C., Le Boeuf, F., Bell, J. C., McCart, J. A., Ristimäki, A., Pesonen, S., Cerullo, V., and Hemminki, A. (2010) Antiangiogenic arming of an oncolytic vaccinia virus enhances antitumor efficacy in renal cell cancer models, J. Virol., 84, 856-866, https://doi.org/10.1128/JVI.00692-09.

    Article  CAS  PubMed  Google Scholar 

  36. Gholami, S., Marano, A., Chen, N. G., Aguilar, R. J., Frentzen, A., Chen, C. H., Lou, E., Fujisawa, S., Eveno, C., Belin, L., Zanzonico, P., Szalay, A., and Fong, Y. (2014) A novel vaccinia virus with dual oncolytic and anti-angiogenic therapeutic effects against triple-negative breast cancer, Breast Cancer Res. Treat., 148, 489-499, https://doi.org/10.1007/s10549-014-3180-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moss, B. (1996) Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety, Proc. Natl. Acad. Sci. USA, 93, 11341-11348, https://doi.org/10.1073/pnas.93.21.11341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hung, C. F., Tsai, Y. C., He, L., Coukos, G., Fodor, I., Qin, L., Levitsky, H., and Wu, T. C. (2007) Vaccinia virus preferentially infects and controls human and murine ovarian tumors in mice, Gene Ther., 14, 20-29, https://doi.org/10.1038/sj.gt.3302840.

    Article  CAS  PubMed  Google Scholar 

  39. Heo, J., Reid, T., Ruo, L., Breitbach, C. J., Rose, S., Bloomston, M., Cho, M., Lim, H. Y., Chung, H. C., Kim, C. W., Burke, J., Lencioni, R., Hickman, T., Moon, A., Lee, Y. S., Kim, M. K., Daneshmand, M., Dubois, K., Longpre, L., Ngo, M., et al. (2013) Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer, Nat. Med., 19, 329-336, https://doi.org/10.1038/nm.3089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mori, K. M., Giuliano, P. D., Lopez, K. L., King, M. M., Bohart, R., and Goldstein, B. H. (2019) Pronounced clinical response following the oncolytic vaccinia virus GL-ONC1 and chemotherapy in a heavily pretreated ovarian cancer patient, Anticancer Drugs, 30, 1064-1066, https://doi.org/10.1097/CAD.0000000000000836.

    Article  CAS  PubMed  Google Scholar 

  41. McCart, J. A., Ward, J. M., Lee, J., Hu, Y., Alexander, H. R., Libutti, S. K., Moss, B., and Bartlett, D. L. (2001) Systemic cancer therapy with a tumor-selective vaccinia virus mutant lacking thymidine kinase and vaccinia growth factor genes, Cancer Res., 61, 8751-8757.

    CAS  PubMed  Google Scholar 

  42. Buller, R. M., Chakrabarti, S., Cooper, J. A., Twardzik, D. R., and Moss, B. (1988) Deletion of the vaccinia virus growth factor gene reduces virus virulence, J. Virol., 62, 866-874, https://doi.org/10.1128/JVI.62.3.866-874.1988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schweneker, M., Lukassen, S., Späth, M., Wolferstätter, M., Babel, E., Brinkmann, K., Wielert, U., Chaplin, P., Suter, M., and Hausmann, J. (2012) The vaccinia virus O1 protein is required for sustained activation of extracellular signal-regulated kinase 1/2 and promotes viral virulence, J. Virol., 86, 2323-2336, https://doi.org/10.1128/JVI.06166-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wee, P., and Wang, Z. (2017) Epidermal growth factor receptor cell proliferation signaling pathways, Cancers (Basel), 9, 52, https://doi.org/10.3390/cancers9050052.

    Article  CAS  PubMed  Google Scholar 

  45. Li, S., Balmain, A., and Counter, C. M. (2018) A model for RAS mutation patterns in cancers: finding the sweet spot, Nat. Rev. Cancer, 18, 767-777, https://doi.org/10.1038/s41568-018-0076-6.

    Article  CAS  PubMed  Google Scholar 

  46. Yuan, T. L., Amzallag, A., Bagni, R., Yi, M., Afghani, S., Burgan, W., Fer, N., Strathern, L. A., Powell, K., Smith, B., Waters, A. M., Drubin, D., Thomson, T., Liao, R., Greninger, P., Stein, G. T., Murchie, E., Cortez, E., Egan, R. K., Procter, L., et al. (2018) Differential effector engagement by oncogenic KRAS, Cell Rep, 22, 1889-1902, https://doi.org/10.1016/j.celrep.2018.01.051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gopinath, P., and Ghosh, S. S. (2008) Implication of functional activity for determining therapeutic efficacy of suicide genes in vitro, Biotechnol. Lett., 30, 1913-1921, https://doi.org/10.1007/s10529-008-9787-1.

    Article  CAS  PubMed  Google Scholar 

  48. Kurosaki, H., Nakatake, M., Sakamoto, T., Kuwano, N., Yamane, M., Ishii, K., Fujiwara, Y., and Nakamura, T. (2021) Anti-tumor effects of MAPK-dependent tumor-selective oncolytic vaccinia virus armed with CD/UPRT against pancreatic ductal adenocarcinoma in mice, Cells, 10, 985, https://doi.org/10.3390/cells10050985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Guo, H., Callaway, J. B., and Ting, J. P. (2015) Inflammasomes: mechanism of action, role in disease, and therapeutics, Nat. Med., 21, 677-687, https://doi.org/10.1038/nm.3893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Guo, Z. S., Naik, A., O’Malley, M. E., Popovic, P., Demarco, R., Hu, Y., Yin, X., Yang, S., Zeh, H. J., Moss, B., Lotze, M. T., and Bartlett, D. L. (2005) The enhanced tumor selectivity of an oncolytic vaccinia lacking the host range and antiapoptosis genes SPI-1 and SPI-2, Cancer Res., 65, 9991-9998, https://doi.org/10.1158/0008-5472.CAN-05-1630.

    Article  CAS  PubMed  Google Scholar 

  51. Legrand, F. A., Verardi, P. H., Chan, K. S., Peng, Y., Jones, L. A., and Yilma, T. D. (2005) Vaccinia viruses with a serpin gene deletion and expressing IFN-gamma induce potent immune responses without detectable replication in vivo, Proc. Natl. Acad. Sci. USA, 102, 2940-2945, https://doi.org/10.1073/pnas.0409846102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sharma, P., Hu-Lieskovan, S., Wargo, J. A., and Ribas, A. (2017) Primary, adaptive, and acquired resistance to cancer immunotherapy, Cell, 168, 707-723, https://doi.org/10.1016/j.cell.2017.01.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pearl, T. M., Markert, J. M., Cassady, K. A., and Ghonime, M. G. (2019) Oncolytic virus-based cytokine expression to improve immune activity in brain and solid tumors, Mol. Ther. Oncolytics, 13, 14-21, https://doi.org/10.1016/j.omto.2019.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang, J. C., Sherry, R. M., Steinberg, S. M., Topalian, S. L., Schwartzentruber, D. J., Hwu, P., Seipp, C. A., Rogers-Freezer, L., Morton, K. E., White, D. E., Liewehr, D. J., Merino, M. J., and Rosenberg, S. A. (2003) Randomized study of high-dose and low-dose interleukin-2 in patients with metastatic renal cancer, J. Clin. Oncol., 21, 3127-3132, https://doi.org/10.1200/JCO.2003.02.122.

    Article  CAS  PubMed  Google Scholar 

  55. Liu, Z., Ge, Y., Wang, H., Ma, C., Feist, M., Ju, S., Guo, Z. S., and Bartlett, D. L. (2018) Modifying the cancer-immune set point using vaccinia virus expressing re-designed interleukin-2, Nat. Commun., 9, 4682, https://doi.org/10.1038/s41467-018-06954-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Scholl, S., Squiban, P., Bizouarne, N., Baudin, M., Acres, B., Von Mensdorff-Pouilly, S., Shearer, M., Beuzeboc, P., Van Belle, S., Uzielly, B., Pouillart, P., Taylor-Papadimitriou, J., and Miles, D. (2003) Metastatic breast tumour regression following treatment by a gene-modified vaccinia virus expressing MUC1 and IL-2, J. Biomed. Biotechnol., 2003, 194-201, https://doi.org/10.1155/S111072430320704X.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yigit, R., Massuger, L. F., Figdor, C. G., and Torensma, R. (2010) Ovarian cancer creates a suppressive microenvironment to escape immune elimination, Gynecol. Oncol., 117, 366-372, https://doi.org/10.1016/j.ygyno.2010.01.019.

    Article  CAS  PubMed  Google Scholar 

  58. Brooks, D. G., Trifilo, M. J., Edelmann, K. H., Teyton, L., McGavern, D. B., and Oldstone, M. B. (2006) Interleukin-10 determines viral clearance or persistence in vivo, Nat. Med., 12, 1301-1309, https://doi.org/10.1038/nm1492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stearns, M. E., Wang, M., Hu, Y., Garcia, F. U., and Rhim, J. (2003) Interleukin 10 blocks matrix metalloproteinase-2 and membrane type 1-matrix metalloproteinase synthesis in primary human prostate tumor lines, Clin. Cancer Res., 9, 1191-1199.

    CAS  PubMed  Google Scholar 

  60. Schock, S. N., Chandra, N. V., Sun, Y., Irie, T., Kitagawa, Y., Gotoh, B., Coscoy, L., and Winoto, A. (2017) Induction of necroptotic cell death by viral activation of the RIG-I or STING pathway, Cell Death Differ., 24, 615-625, https://doi.org/10.1038/cdd.2016.153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Emmerich, J., Mumm, J. B., Chan, I. H., LaFace, D., Truong, H., McClanahan, T., Gorman, D. M., and Oft, M. (2012) IL-10 directly activates and expands tumor-resident CD8+ T cells without de novo infiltration from secondary lymphoid organs, Cancer Res., 72, 3570-3581, https://doi.org/10.1158/0008-5472.CAN-12-0721.

    Article  CAS  PubMed  Google Scholar 

  62. Tanaka, F., Tominaga, K., Shiota, M., Ochi, M., Kuwamura, H., Tanigawa, T., Watanabe, T., Fujiwara, Y., Oshitani, N., Higuchi, K., Iwao, H., and Arakawa, T. (2008) Interleukin-10 gene transfer to peritoneal mesothelial cells suppresses peritoneal dissemination of gastric cancer cells due to a persistently high concentration in the peritoneal cavity, Cancer Gene Ther., 15, 51-59, https://doi.org/10.1038/sj.cgt.7701104.

    Article  CAS  PubMed  Google Scholar 

  63. Chard, L. S., Maniati, E., Wang, P., Zhang, Z., Gao, D., Wang, J., Cao, F., Ahmed, J., El Khouri, M., Hughes, J., Wang, S., Li, X., Denes, B., Fodor, I., Hagemann, T., Lemoine, N. R., and Wang, Y. (2015) A vaccinia virus armed with interleukin-10 is a promising therapeutic agent for treatment of murine pancreatic cancer, Clin. Cancer Res., 21, 405-416, https://doi.org/10.1158/1078-0432.CCR-14-0464.

    Article  CAS  PubMed  Google Scholar 

  64. Trinchieri, G., and Scott, P. (1994) The role of interleukin 12 in the immune response, disease and therapy, Immunol. Today, 15, 460-463, https://doi.org/10.1016/0167-5699(94)90189-9.

    Article  CAS  PubMed  Google Scholar 

  65. Scott, P. (1993) IL-12: initiation cytokine for cell-mediated immunity, Science, 260, 496-497, https://doi.org/10.1126/science.8097337.

    Article  CAS  PubMed  Google Scholar 

  66. Nastala, C. L., Edington, H. D., McKinney, T. G., Tahara, H., Nalesnik, M. A., Brunda, M. J., Gately, M. K., Wolf, S. F., Schreiber, R. D., and Storkus, W. J. (1994) Recombinant IL-12 administration induces tumor regression in association with IFN-gamma production, J. Immunol., 153, 1697-1706.

    Article  CAS  PubMed  Google Scholar 

  67. Mu, J., Zou, J. P., Yamamoto, N., Tsutsui, T., Tai, X. G., Kobayashi, M., Herrmann, S., Fujiwara, H., and Hamaoka, T. (1995) Administration of recombinant interleukin 12 prevents outgrowth of tumor cells metastasizing spontaneously to lung and lymph nodes, Cancer Res., 55, 4404-4408.

    CAS  PubMed  Google Scholar 

  68. Meko, J. B., Tsung, K., and Norton, J. A. (1996) Cytokine production and antitumor effect of a nonreplicating, noncytopathic recombinant vaccinia virus expressing interleukin-12, Surgery, 120, 274-282; discussion 282-273, https://doi.org/10.1016/s0039-6060(96)80298-4.

    Article  CAS  PubMed  Google Scholar 

  69. Waldmann, T. A. (2015) The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy, Cancer Immunol. Res., 3, 219-227, https://doi.org/10.1158/2326-6066.CIR-15-0009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Conlon, K. C., Miljkovic, M. D., and Waldmann, T. A. (2019) Cytokines in the treatment of cancer, J. Interferon Cytokine Res., 39, 6-21, https://doi.org/10.1089/jir.2018.0019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rhode, P. R., Egan, J. O., Xu, W., Hong, H., Webb, G. M., Chen, X., Liu, B., Zhu, X., Wen, J., You, L., Kong, L., Edwards, A. C., Han, K., Shi, S., Alter, S., Sacha, J. B., Jeng, E. K., Cai, W., and Wong, H. C. (2016) Comparison of the superagonist complex, ALT-803, to IL15 as cancer immunotherapeutics in animal models, Cancer Immunol. Res., 4, 49-60, https://doi.org/10.1158/2326-6066.CIR-15-0093-T.

    Article  CAS  PubMed  Google Scholar 

  72. Van den Bergh, J. M., Lion, E., Van Tendeloo, V. F., and Smits, E. L. (2017) IL-15 receptor alpha as the magic wand to boost the success of IL-15 antitumor therapies: the upswing of IL-15 transpresentation, Pharmacol. Ther., 170, 73-79, https://doi.org/10.1016/j.pharmthera.2016.10.012.

    Article  CAS  PubMed  Google Scholar 

  73. Epardaud, M., Elpek, K. G., Rubinstein, M. P., Yonekura, A. R., Bellemare-Pelletier, A., Bronson, R., Hamerman, J. A., Goldrath, A. W., and Turley, S. J. (2008) Interleukin-15/interleukin-15R alpha complexes promote destruction of established tumors by reviving tumor-resident CD8+ T cells, Cancer Res., 68, 2972-2983, https://doi.org/10.1158/0008-5472.CAN-08-0045.

    Article  CAS  PubMed  Google Scholar 

  74. Kowalsky, S. J., Liu, Z., Feist, M., Berkey, S. E., Ma, C., Ravindranathan, R., Dai, E., Roy, E. J., Guo, Z. S., and Bartlett, D. L. (2018) Superagonist IL-15-armed oncolytic virus elicits potent antitumor immunity and therapy that are enhanced with PD-1 blockade, Mol. Ther., 26, 2476-2486, https://doi.org/10.1016/j.ymthe.2018.07.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kinter, A. L., Godbout, E. J., McNally, J. P., Sereti, I., Roby, G. A., O’Shea, M. A., and Fauci, A. S. (2008) The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands, J. Immunol., 181, 6738-6746, https://doi.org/10.4049/jimmunol.181.10.6738.

    Article  CAS  PubMed  Google Scholar 

  76. Moroz, A., Eppolito, C., Li, Q., Tao, J., Clegg, C. H., and Shrikant, P. A. (2004) IL-21 enhances and sustains CD8+ T cell responses to achieve durable tumor immunity: comparative evaluation of IL-2, IL-15, and IL-21, J. Immunol., 173, 900-909, https://doi.org/10.4049/jimmunol.173.2.900.

    Article  CAS  PubMed  Google Scholar 

  77. Chen, T., Ding, X., Liao, Q., Gao, N., Chen, Y., Zhao, C., Zhang, X., and Xu, J. (2021) IL-21 arming potentiates the anti-tumor activity of an oncolytic vaccinia virus in monotherapy and combination therapy, J. Immunother. Cancer, 9, e001647, https://doi.org/10.1136/jitc-2020-001647.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sun, Y., Zhang, Z., Zhang, C., Zhang, N., Wang, P., Chu, Y., Chard Dunmall, L. S., Lemoine, N. R., and Wang, Y. (2022) An effective therapeutic regime for treatment of glioma using oncolytic vaccinia virus expressing IL-21 in combination with immune checkpoint inhibition, Mol. Ther. Oncolytics, 26, 105-119, https://doi.org/10.1016/j.omto.2022.05.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gasson, J. C. (1991) Molecular physiology of granulocyte-macrophage colony-stimulating factor, Blood, 77, 1131-1145.

    Article  CAS  PubMed  Google Scholar 

  80. Bauer, T. V., Tregubchak, T. V., Maksyutov, A. Z., Kolosova, I. V., Maksyutov, R. A., and Gavrilova, E. V. (2020) Development of the drug oncolytic immunotherapy based on vaccinia viruses (Vaccinia virus, Orthopoxvirus, Chordopoxvirinae, Poxviridae) against breast cancer [in Russian], Vopr. Virusol., 65, 49-56, https://doi.org/10.36233/0507-4088-2020-65-1-49-56.

    Article  CAS  PubMed  Google Scholar 

  81. Deng, L., Yang, X., Fan, J., Ding, Y., Peng, Y., Xu, D., Huang, B., and Hu, Z. (2020) An oncolytic vaccinia virus armed with GM-CSF and IL-24 double genes for cancer targeted therapy, Onco Targets Ther., 13, 3535-3544, https://doi.org/10.2147/OTT.S249816.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Duggan, M. C., Jochems, C., Donahue, R. N., Richards, J., Karpa, V., Foust, E., Paul, B., Brooks, T., Tridandapani, S., Olencki, T., Pan, X., Lesinski, G. B., Schlom, J., and Carson III, W. E. (2016) A phase I study of recombinant (r) vaccinia-CEA(6D)-TRICOM and rFowlpox-CEA(6D)-TRICOM vaccines with GM-CSF and IFN-alpha-2b in patients with CEA-expressing carcinomas, Cancer Immunol. Immunother., 65, 1353-1364, https://doi.org/10.1007/s00262-016-1893-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Heinrich, B., Klein, J., Delic, M., Goepfert, K., Engel, V., Geberzahn, L., Lusky, M., Erbs, P., Preville, X., and Moehler, M. (2017) Immunogenicity of oncolytic vaccinia viruses JX-GFP and TG6002 in a human melanoma in vitro model: studying immunogenic cell death, dendritic cell maturation and interaction with cytotoxic T lymphocytes, Onco Targets Ther., 10, 2389-2401, https://doi.org/10.2147/OTT.S126320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Inoue, T., Byrne, T., Inoue, M., Tait, M. E., Wall, P., Wang, A., Dermyer, M. R., Laklai, H., Binder, J. J., Lees, C., Hollingsworth, R., Maruri-Avidal, L., Kirn, D. H., and McDonald, D. M. (2021) Oncolytic vaccinia virus gene modification and cytokine expression effects on tumor infection, immune response, and killing, Mol. Cancer Ther., 20, 1481-1494, https://doi.org/10.1158/1535-7163.MCT-20-0863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kannanganat, S., Wyatt, L. S., Gangadhara, S., Chamcha, V., Chea, L. S., Kozlowski, P. A., LaBranche, C. C., Chennareddi, L., Lawson, B., Reddy, P. B., Styles, T. M., Vanderford, T. H., Montefiori, D. C., Moss, B., Robinson, H. L., and Amara, R. R. (2016) High doses of GM-CSF inhibit antibody responses in rectal secretions and diminish modified vaccinia Ankara/Simian immunodeficiency virus vaccine protection in TRIM5alpha-restrictive macaques, J. Immunol., 197, 3586-3596, https://doi.org/10.4049/jimmunol.1600629.

    Article  CAS  PubMed  Google Scholar 

  86. Witmer-Pack, M. D., Olivier, W., Valinsky, J., Schuler, G., and Steinman, R. M. (1987) Granulocyte/macrophage colony-stimulating factor is essential for the viability and function of cultured murine epidermal Langerhans cells, J. Exp. Med., 166, 1484-1498, https://doi.org/10.1084/jem.166.5.1484.

    Article  CAS  PubMed  Google Scholar 

  87. McLaughlin, J. P., Abrams, S., Kantor, J., Dobrzanski, M. J., Greenbaum, J., Schlom, J., and Greiner, J. W. (1997) Immunization with a syngeneic tumor infected with recombinant vaccinia virus expressing granulocyte-macrophage colony-stimulating factor (GM-CSF) induces tumor regression and long-lasting systemic immunity, J. Immunother., 20, 449-459, https://doi.org/10.1097/00002371-199711000-00004.

    Article  CAS  PubMed  Google Scholar 

  88. Kochneva, G., Sivolobova, G., Tkacheva, A., Grazhdantseva, A., Troitskaya, O., Nushtaeva, A., Tkachenko, A., Kuligina, E., Richter, V., and Koval, O. (2016) Engineering of double recombinant vaccinia virus with enhanced oncolytic potential for solid tumor virotherapy, Oncotarget, 7, 74171-74188, https://doi.org/10.18632/oncotarget.12367.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Koval, O., Kochneva, G., Tkachenko, A., Troitskaya, O., Sivolobova, G., Grazhdantseva, A., Nushtaeva, A., Kuligina, E., and Richter, V. (2017) Recombinant vaccinia viruses coding transgenes of apoptosis-inducing proteins enhance apoptosis but not immunogenicity of infected tumor cells, Biomed Res. Int., 2017, 3620510, https://doi.org/10.1155/2017/3620510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shakiba, Y., Naberezhnaya, E., Kochetkov, D., Yusubalieva, G., Vorobyev, P., Chumakov, P., Baklaushev, V., and Lipatova, A. (2023) Comparison of the oncolytic activity of recombinant vaccinia virus strains LIVP-RFP and MVA-RFP against solid tumors, Bull. RSMU, 2023, https://doi.org/10.24075/brsmu.2023.010.

    Article  Google Scholar 

  91. Grazhdantseva, A. A., Sivolobova, G. F., Tkacheva, A. V., Gileva, I. P., Kuligina, E. V., Rikhter, V. A., and Kochneva, G. V. (2016) Highly effective production of biologically active, secreted, human granulocyte-macrophage colony-stimulating factor by recombinant vaccinia virus, Appl. Biochem. Microbiol., 52, 685-691, https://doi.org/10.1134/S0003683816070036.

    Article  CAS  Google Scholar 

  92. Vasileva, N., Ageenko, A., Dmitrieva, M., Nushtaeva, A., Mishinov, S., Kochneva, G., Richter, V., and Kuligina, E. (2021) Double recombinant vaccinia virus: a candidate drug against human glioblastoma, Life (Basel), 11, 1084, https://doi.org/10.3390/life11101084.

    Article  CAS  PubMed  Google Scholar 

  93. Von Krempelhuber, A., Vollmar, J., Pokorny, R., Rapp, P., Wulff, N., Petzold, B., Handley, A., Mateo, L., Siersbol, H., Kollaritsch, H., and Chaplin, P. (2010) A randomized, double-blind, dose-finding Phase II study to evaluate immunogenicity and safety of the third generation smallpox vaccine candidate IMVAMUNE, Vaccine, 28, 1209-1216, https://doi.org/10.1016/j.vaccine.2009.11.030.

    Article  CAS  PubMed  Google Scholar 

  94. Verardi, P. H., Titong, A., and Hagen, C. J. (2012) A vaccinia virus renaissance: new vaccine and immunotherapeutic uses after smallpox eradication, Hum. Vaccin Immunother., 8, 961-970, https://doi.org/10.4161/hv.21080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Collins, M., Ling, V., and Carreno, B. M. (2005) The B7 family of immune-regulatory ligands, Genome Biol., 6, 223, https://doi.org/10.1186/gb-2005-6-6-223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kaufman, H. L., Deraffele, G., Mitcham, J., Moroziewicz, D., Cohen, S. M., Hurst-Wicker, K. S., Cheung, K., Lee, D. S., Divito, J., Voulo, M., Donovan, J., Dolan, K., Manson, K., Panicali, D., Wang, E., Hörig, H., and Marincola, F. M. (2005) Targeting the local tumor microenvironment with vaccinia virus expressing B7.1 for the treatment of melanoma, J. Clin. Invest., 115, 1903-1912, https://doi.org/10.1172/JCI24624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hodge, J. W., McLaughlin, J. P., Abrams, S. I., Shupert, W. L., Schlom, J., and Kantor, J. A. (1995) Admixture of a recombinant vaccinia virus containing the gene for the costimulatory molecule B7 and a recombinant vaccinia virus containing a tumor-associated antigen gene results in enhanced specific T-cell responses and antitumor immunity, Cancer Res., 55, 3598-3603.

    CAS  PubMed  Google Scholar 

  98. Hodge, J. W., Sabzevari, H., Yafal, A. G., Gritz, L., Lorenz, M. G., and Schlom, J. (1999) A triad of costimulatory molecules synergize to amplify T-cell activation, Cancer Res., 59, 5800-5807.

    CAS  PubMed  Google Scholar 

  99. Kudo-Saito, C., Hodge, J. W., Kwak, H., Kim-Schulze, S., Schlom, J., and Kaufman, H. L. (2006) 4-1BB ligand enhances tumor-specific immunity of poxvirus vaccines, Vaccine, 24, 4975-4986, https://doi.org/10.1016/j.vaccine.2006.03.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hayashi, F., Smith, K. D., Ozinsky, A., Hawn, T. R., Yi, E. C., Goodlett, D. R., Eng, J. K., Akira, S., Underhill, D. M., and Aderem, A. (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5, Nature, 410, 1099-1103, https://doi.org/10.1038/35074106.

    Article  CAS  PubMed  Google Scholar 

  101. Kofoed, E. M., and Vance, R. E. (2011) Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity, Nature, 477, 592-595, https://doi.org/10.1038/nature10394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Weimer, E. T., Lu, H., Kock, N. D., Wozniak, D. J., and Mizel, S. B. (2009) A fusion protein vaccine containing OprF epitope 8, OprI, and type A and B flagellins promotes enhanced clearance of nonmucoid Pseudomonas aeruginosa, Infect. Immun., 77, 2356-2366, https://doi.org/10.1128/IAI.00054-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. De Melo, F. M., Braga, C. J., Pereira, F. V., Maricato, J. T., Origassa, C. S., Souza, M. F., Melo, A. C., Silva, P., Tomaz, S. L., Gimenes, K. P., Scutti, J. A., Juliano, M. A., Zamboni, D. S., Câmara, N. O., Travassos, L. R., Ferreira, L. C., and Rodrigues, E. G. (2015) Anti-metastatic immunotherapy based on mucosal administration of flagellin and immunomodulatory P10, Immunol. Cell Biol., 93, 86-98, https://doi.org/10.1038/icb.2014.74.

    Article  CAS  PubMed  Google Scholar 

  104. Mizel, S. B., and Bates, J. T. (2010) Flagellin as an adjuvant: cellular mechanisms and potential, J. Immunol., 185, 5677-5682, https://doi.org/10.4049/jimmunol.1002156.

    Article  CAS  PubMed  Google Scholar 

  105. Sanos, S. L., Kassub, R., Testori, M., Geiger, M., Pätzold, J., Giessel, R., Knallinger, J., Bathke, B., Gräbnitz, F., Brinkmann, K., Chaplin, P., Suter, M., Hochrein, H., and Lauterbach, H. (2017) NLRC4 inflammasome-driven immunogenicity of a recombinant MVA mucosal vaccine encoding flagellin, Front. Immunol., 8, 1988, https://doi.org/10.3389/fimmu.2017.01988.

    Article  CAS  PubMed  Google Scholar 

  106. Chen, W., Zheng, R., Zhang, S., Zhao, P., Li, G., Wu, L., and He, J. (2013) The incidences and mortalities of major cancers in China, 2009, Chin. J. Cancer, 32, 106-112, https://doi.org/10.5732/cjc.013.10018.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Strong, V. E., Wu, A. W., Selby, L. V., Gonen, M., Hsu, M., Song, K. Y., Park, C. H., Coit, D. G., Ji, J. F., and Brennan, M. F. (2015) Differences in gastric cancer survival between the U.S. and China, J. Surg. Oncol., 112, 31-37, https://doi.org/10.1002/jso.23940.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Conrad, S. J., El-Aswad, M., Kurban, E., Jeng, D., Tripp, B. C., Nutting, C., Eversole, R., Mackenzie, C., and Essani, K. (2015) Oncolytic tanapoxvirus expressing FliC causes regression of human colorectal cancer xenografts in nude mice, J. Exp. Clin. Cancer Res., 34, 19, https://doi.org/10.1186/s13046-015-0131-z.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Wang, M., Luo, Y., Sun, T., Mao, C., Jiang, Y., Yu, X., Li, Z., Xie, T., Wu, F., Yan, H., and Teng, L. (2020) The ectopic expression of survivinT34A and FilC can enhance the oncolytic effects of vaccinia virus in murine gastric cancer, Onco Targets Ther., 13, 1011-1025, https://doi.org/10.2147/OTT.S230902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Andersen, M. H., Svane, I. M., Becker, J. C., and Straten, P. T. (2007) The universal character of the tumor-associated antigen survivin, Clin. Cancer Res., 13, 5991-5994, https://doi.org/10.1158/1078-0432.CCR-07-0686.

    Article  CAS  PubMed  Google Scholar 

  111. Shakiba, Y., Vorobyev, P. O., Naumenko, V. A., Kochetkov, D. V., Zajtseva, K. V., Valikhov, M. P., Yusubalieva, G. M., Gumennaya, Y. D., Emelyanov, E. A., Semkina, A. S., Baklaushev, V. P., Chumakov, P. M., and Lipatova, A. V. (2023) Oncolytic efficacy of a recombinant vaccinia virus strain expressing bacterial flagellin in solid tumor models, Viruses, 15, 828, https://doi.org/10.3390/v15040828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Barber, D. L., Wherry, E. J., Masopust, D., Zhu, B., Allison, J. P., Sharpe, A. H., Freeman, G. J., and Ahmed, R. (2006) Restoring function in exhausted CD8 T cells during chronic viral infection, Nature, 439, 682-687, https://doi.org/10.1038/nature04444.

    Article  CAS  PubMed  Google Scholar 

  113. Shi, Z., Liu, B., Huang, C., Xie, W., Cen, Y., Chen, L., and Liang, M. (2021) An oncolytic vaccinia virus armed with anti-human-PD-1 antibody and anti-human-4-1BB antibody double genes for cancer-targeted therapy, Biochem. Biophys. Res. Commun., 559, 176-182, https://doi.org/10.1016/j.bbrc.2021.04.078.

    Article  CAS  PubMed  Google Scholar 

  114. Marchand, J.-B., Semmrich, M., Fend, L., Rehn, M., Silvestre, N., Teige, I., Foloppe, F., Mårtensson, L., Quéméneur, E., and Frendeus, B. (2020) BT-001, an oncolytic vaccinia virus armed with a Treg-depletion-optimized recombinant human anti-CTLA4 antibody and GM-CSF to target the tumor microenvironment, Cancer Res., 8, https://doi.org/10.1136/jitc-2020-SITC2020.0594.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Dushek, O., Goyette, J., and van der Merwe, P. A. (2012) Non-catalytic tyrosine-phosphorylated receptors, Immunol Rev, 250, 258-276, https://doi.org/10.1111/imr.12008.

    Article  CAS  PubMed  Google Scholar 

  116. Zuo, S., Wei, M., He, B., Chen, A., Wang, S., Kong, L., Zhang, Y., Meng, G., Xu, T., Wu, J., Yang, F., Zhang, H., Wang, S., Guo, C., Wu, J., Dong, J., and Wei, J. (2021) Enhanced antitumor efficacy of a novel oncolytic vaccinia virus encoding a fully monoclonal antibody against T-cell immunoglobulin and ITIM domain (TIGIT), EBioMedicine, 64, 103240, https://doi.org/10.1016/j.ebiom.2021.103240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L., and Kroemer, G. (2017) Immunogenic cell death in cancer and infectious disease, Nat. Rev. Immunol., 17, 97-111, https://doi.org/10.1038/nri.2016.107.

    Article  CAS  PubMed  Google Scholar 

  118. Van Hoecke, L., Van Lint, S., Roose, K., Van Parys, A., Vandenabeele, P., Grooten, J., Tavernier, J., De Koker, S., and Saelens, X. (2018) Treatment with mRNA coding for the necroptosis mediator MLKL induces antitumor immunity directed against neo-epitopes, Nat. Commun., 9, 3417, https://doi.org/10.1038/s41467-018-05979-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Van Hoecke, L., Riederer, S., Saelens, X., Sutter, G., and Rojas, J. J. (2020) Recombinant viruses delivering the necroptosis mediator MLKL induce a potent antitumor immunity in mice, Oncoimmunology, 9, 1802968, https://doi.org/10.1080/2162402X.2020.1802968.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Kochneva, G. V., Babkina, I. N., Lupan, T. A., Grazhdantseva, A. A., Iudin, P. V., Sivolobova, G. F., Shvalov, A. N., Popov, E. G., Babkin, I. V., Netesov, S. V., and Chumakov, P. M. (2013) Apoptin enhances the oncolytic activity of vaccinia virus [in Russian], Mol. Biol. (Mosk), 47, 842-852.

    Article  CAS  PubMed  Google Scholar 

  121. Kochneva, G., Zonov, E., Grazhdantseva, A., Yunusova, A., Sibolobova, G., Popov, E., Taranov, O., Netesov, S., Chumakov, P., and Ryabchikova, E. (2014) Apoptin enhances the oncolytic properties of vaccinia virus and modifies mechanisms of tumor regression, Oncotarget, 5, 11269-11282, https://doi.org/10.18632/oncotarget.2579.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Di Pilato, M., Mejías-Pérez, E., Sorzano, C. O. S., and Esteban, M. (2017) Distinct roles of vaccinia virus NF-κB inhibitor proteins A52, B15, and K7 in the immune response, J. Virol., 91, https://doi.org/10.1128/JVI.00575-17.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Holgado, M. P., Falivene, J., Maeto, C., Amigo, M., Pascutti, M. F., Vecchione, M. B., Bruttomesso, A., Calamante, G., Del Médico-Zajac, M. P., and Gherardi, M. M. (2016) Deletion of A44L, A46R and C12L vaccinia virus genes from the MVA genome improved the vector immunogenicity by modifying the innate immune response generating enhanced and optimized specific T-cell responses, Viruses, 8, 139, https://doi.org/10.3390/v8050139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tsang, K. Y., Palena, C., Yokokawa, J., Arlen, P. M., Gulley, J. L., Mazzara, G. P., Gritz, L., Yafal, A. G., Ogueta, S., Greenhalgh, P., Manson, K., Panicali, D., and Schlom, J. (2005) Analyses of recombinant vaccinia and fowlpox vaccine vectors expressing transgenes for two human tumor antigens and three human costimulatory molecules, Clin. Cancer Res., 11, 1597-1607, https://doi.org/10.1158/1078-0432.CCR-04-1609.

    Article  CAS  PubMed  Google Scholar 

  125. Ylösmäki, E., Malorzo, C., Capasso, C., Honkasalo, O., Fusciello, M., Martins, B., Ylösmäki, L., Louna, A., Feola, S., Paavilainen, H., Peltonen, K., Hukkanen, V., Viitala, T., and Cerullo, V. (2018) Personalized cancer vaccine platform for clinically relevant oncolytic enveloped viruses, Mol. Ther., 26, 2315-2325, https://doi.org/10.1016/j.ymthe.2018.06.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chalikonda, S., Kivlen, M. H., O’Malley, M. E., Eric Dong, X. D., McCart, J. A., Gorry, M. C., Yin, X. Y., Brown, C. K., Zeh, H. J., Guo, Z. S., and Bartlett, D. L. (2008) Oncolytic virotherapy for ovarian carcinomatosis using a replication-selective vaccinia virus armed with a yeast cytosine deaminase gene, Cancer Gene Ther., 15, 115-125, https://doi.org/10.1038/sj.cgt.7701110.

    Article  CAS  PubMed  Google Scholar 

  127. Seubert, C. M., Stritzker, J., Hess, M., Donat, U., Sturm, J. B., Chen, N., von Hof, J. M., Krewer, B., Tietze, L. F., Gentschev, I., and Szalay, A. A. (2011) Enhanced tumor therapy using vaccinia virus strain GLV-1h68 in combination with a β-galactosidase-activatable prodrug seco-analog of duocarmycin SA, Cancer Gene Ther., 18, 42-52, https://doi.org/10.1038/cgt.2010.49.

    Article  CAS  PubMed  Google Scholar 

  128. Marchini, A., Scott, E. M., and Rommelaere, J. (2016) Overcoming barriers in oncolytic virotherapy with HDAC inhibitors and immune checkpoint blockade, Viruses, 8, 9, https://doi.org/10.3390/v8010009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. MacTavish, H., Diallo, J. S., Huang, B., Stanford, M., Le Boeuf, F., De Silva, N., Cox, J., Simmons, J. G., Guimond, T., Falls, T., McCart, J. A., Atkins, H., Breitbach, C., Kirn, D., Thorne, S., and Bell, J. C. (2010) Enhancement of vaccinia virus based oncolysis with histone deacetylase inhibitors, PLoS One, 5, e14462, https://doi.org/10.1371/journal.pone.0014462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Francis, L., Guo, Z. S., Liu, Z., Ravindranathan, R., Urban, J. A., Sathaiah, M., Magge, D., Kalinski, P., and Bartlett, D. L. (2016) Modulation of chemokines in the tumor microenvironment enhances oncolytic virotherapy for colorectal cancer, Oncotarget, 7, 22174-22185, https://doi.org/10.18632/oncotarget.7907.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Kim, M., Nitschké, M., Sennino, B., Murer, P., Schriver, B. J., Bell, A., Subramanian, A., McDonald, C. E., Wang, J., Cha, H., Bourgeois-Daigneault, M. C., Kirn, D. H., Bell, J. C., De Silva, N., Breitbach, C. J., and McDonald, D. M. (2018) Amplification of oncolytic vaccinia virus widespread tumor cell killing by sunitinib through multiple mechanisms, Cancer Res., 78, 922-937, https://doi.org/10.1158/0008-5472.CAN-15-3308.

    Article  CAS  PubMed  Google Scholar 

  132. Zhang, B., and Cheng, P. (2020) Improving antitumor efficacy via combinatorial regimens of oncolytic virotherapy, Mol. Cancer, 19, 158, https://doi.org/10.1186/s12943-020-01275-6.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Mell, L. K., Brumund, K. T., Daniels, G. A., Advani, S. J., Zakeri, K., Wright, M. E., Onyeama, S. J., Weisman, R. A., Sanghvi, P. R., Martin, P. J., and Szalay, A. A. (2017) Phase I trial of intravenous oncolytic vaccinia virus (GL-ONC1) with cisplatin and radiotherapy in patients with locoregionally advanced head and neck carcinoma, Clin. Cancer Res., 23, 5696-5702, https://doi.org/10.1158/1078-0432.CCR-16-3232.

    Article  CAS  PubMed  Google Scholar 

  134. Ramlau, R., Quoix, E., Rolski, J., Pless, M., Lena, H., Levy, E., Krzakowski, M., Hess, D., Tartour, E., Chenard, M. P., Limacher, J. M., Bizouarne, N., Acres, B., Halluard, C., and Velu, T. (2008) A phase II study of Tg4010 (Mva-Muc1-Il2) in association with chemotherapy in patients with stage III/IV Non-small cell lung cancer, J. Thorac. Oncol., 3, 735-744, https://doi.org/10.1097/JTO.0b013e31817c6b4f.

    Article  PubMed  Google Scholar 

  135. Song, C. K., Han, H. D., Noh, K. H., Kang, T. H., Park, Y. S., Kim, J. H., Park, E. S., Shin, B. C., and Kim, T. W. (2007) Chemotherapy enhances CD8+ T cell-mediated antitumor immunity induced by vaccination with vaccinia virus, Mol. Ther., 15, 1558-1563, https://doi.org/10.1038/sj.mt.6300221.

    Article  CAS  PubMed  Google Scholar 

  136. Chen, W. Y., Chen, Y. L., Lin, H. W., Chang, C. F., Huang, B. S., Sun, W. Z., and Cheng, W. F. (2021) Stereotactic body radiation combined with oncolytic vaccinia virus induces potent anti-tumor effect by triggering tumor cell necroptosis and DAMPs, Cancer Lett., 523, 149-161, https://doi.org/10.1016/j.canlet.2021.09.040.

    Article  CAS  PubMed  Google Scholar 

  137. Klebanoff, C. A., Khong, H. T., Antony, P. A., Palmer, D. C., and Restifo, N. P. (2005) Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy, Trends Immunol., 26, 111-117, https://doi.org/10.1016/j.it.2004.12.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kim, H. S., Kim-Schulze, S., Kim, D. W., and Kaufman, H. L. (2009) Host lymphodepletion enhances the therapeutic activity of an oncolytic vaccinia virus expressing 4-1BB ligand, Cancer Res., 69, 8516-8525, https://doi.org/10.1158/0008-5472.CAN-09-2522.

    Article  CAS  PubMed  Google Scholar 

  139. Prieto, P. A., Yang, J. C., Sherry, R. M., Hughes, M. S., Kammula, U. S., White, D. E., Levy, C. L., Rosenberg, S. A., and Phan, G. Q. (2012) CTLA-4 blockade with ipilimumab: long-term follow-up of 177 patients with metastatic melanoma, Clin. Cancer Res., 18, 2039-2047, https://doi.org/10.1158/1078-0432.CCR-11-1823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Vaddepally, R. K., Kharel, P., Pandey, R., Garje, R., and Chandra, A. B. (2020) Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence, Cancers (Basel), 12, 738, https://doi.org/10.3390/cancers12030738.

    Article  CAS  PubMed  Google Scholar 

  141. Schaedler, E., Remy-Ziller, C., Hortelano, J., Kehrer, N., Claudepierre, M. C., Gatard, T., Jakobs, C., Préville, X., Carpentier, A. F., and Rittner, K. (2017) Sequential administration of a MVA-based MUC1 cancer vaccine and the TLR9 ligand Litenimod (Li28) improves local immune defense against tumors, Vaccine, 35, 577-585, https://doi.org/10.1016/j.vaccine.2016.12.020.

    Article  CAS  PubMed  Google Scholar 

  142. Remy-Ziller, C., Thioudellet, C., Hortelano, J., Gantzer, M., Nourtier, V., Claudepierre, M. C., Sansas, B., Préville, X., Bendjama, K., Quemeneur, E., and Rittner, K. (2018) Sequential administration of MVA-based vaccines and PD-1/PD-L1-blocking antibodies confers measurable benefits on tumor growth and survival: preclinical studies with MVA-βGal and MVA-MUC1 (TG4010) in a murine tumor model, Hum. Vaccin Immunother., 14, 140-145, https://doi.org/10.1080/21645515.2017.1373921.

    Article  PubMed  Google Scholar 

  143. Foy, S. P., Mandl, S. J., dela Cruz, T., Cote, J. J., Gordon, E. J., Trent, E., Delcayre, A., Breitmeyer, J., Franzusoff, A., and Rountree, R. B. (2016) Poxvirus-based active immunotherapy synergizes with CTLA-4 blockade to increase survival in a murine tumor model by improving the magnitude and quality of cytotoxic T cells, Cancer Immunol. Immunother., 65, 537-549, https://doi.org/10.1007/s00262-016-1816-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mandl, S. J., Rountree, R. B., Dalpozzo, K., Do, L., Lombardo, J. R., Schoonmaker, P. L., Dirmeier, U., Steigerwald, R., Giffon, T., Laus, R., and Delcayre, A. (2012) Immunotherapy with MVA-BN®-HER2 induces HER-2-specific Th1 immunity and alters the intratumoral balance of effector and regulatory T cells, Cancer Immunol. Immunother., 61, 19-29, https://doi.org/10.1007/s00262-011-1077-4.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The project was financially supported by the Russian Science Foundation (grant no. 20-75-10157). The part of the project dedicated to the analysis of combination therapy with oncolytic viruses and other immunotherapeutic approaches was supported by the Russian Science Foundation (grant no. 22-64-00057).

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm their contribution to the paper as follows: study conception and design: Y.S. Data collection: Y.S., A.L. Draft manuscript preparation and graphical design: Y.S. Revising and editing: Y.S., P.V., M.M., A.H., D.K., G.Y, V.B., P.C., A.L. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Anastasia V. Lipatova.

Ethics declarations

The authors declare no conflicts of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakiba, Y., Vorobyev, P.O., Mahmoud, M. et al. Recombinant Strains of Oncolytic Vaccinia Virus for Cancer Immunotherapy. Biochemistry Moscow 88, 823–841 (2023). https://doi.org/10.1134/S000629792306010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792306010X

Keywords

Navigation