Skip to main content
Log in

The elusive metric of lesion load

  • Review
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

One of the widely used metrics in lesion-symptom mapping is lesion load that codes the amount of damage to a given brain region of interest. Lesion load aims to reduce the complex 3D lesion information into a feature that can reflect both site of damage, defined by the location of the region of interest, and size of damage within that region of interest. Basically, the process of estimation of lesion load converts a voxel-based lesion map into a region-based lesion map, with regions defined as atlas-based or data-driven spatial patterns. Here, after examining current definitions of lesion load, four methodological issues are discussed: (1) lesion load is agnostic to the location of damage within the region of interest, and it disregards damage outside the region of interest, (2) lesion load estimates are prone to errors introduced by the uncertainty in lesion delineation, spatial warping of the lesion/region, and binarization of the lesion/region, (3) lesion load calculation depends on brain parcellation selection, and (4) lesion load does not necessarily reflect a white matter disconnection. Overall, lesion load, when calculated in a robust way, can serve as a clinically-useful feature for explaining and predicting post-stroke outcome and recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing not applicable as no datasets were generated or analysed in this work.

References

  • Aben HP, Biessels GJ, Weaver NA, Spikman JM, Visser-Meily JMA, de Kort PLM, Reijmer YD (2019) Extent to which network hubs are affected by ischemic stroke predicts cognitive recovery. Stroke 50:2768–2774

    Article  CAS  PubMed  Google Scholar 

  • Argyropoulos GP, Loane C, Roca-Fernandez A, Lage-Martinez C, Gurau O, Irani SR, Butler CR (2019) Network-wide abnormalities explain memory variability in hippocampal amnesia. Elife 8:223

    Article  Google Scholar 

  • Ballester BR, Maier M, Duff A, Cameirao M, Bermudez S, Duarte E, Cuxart A, Rodriguez S, Mozo SS (2019) A critical time window for recovery extends beyond one-year post-stroke. J Neurophysiol 122:350–357

    Article  PubMed  PubMed Central  Google Scholar 

  • Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S et al (2010) Toward discovery science of human brain function. Proc Natl Acad Sci U S A 107:4734–4739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonilha L, Gleichgerrcht E, Nesland T, Rorden C, Fridriksson J (2016) Success of anomia treatment in aphasia is associated with preserved architecture of global and left temporal lobe structural networks. Neurorehabil Neural Repair 30:266–279

    Article  PubMed  Google Scholar 

  • Bonkhoff AK, Xu T, Nelson A, Gray R, Jha A, Cardoso J, Ourselin S, Rees G, Jager HR, Nachev P (2021) Reclassifying stroke lesion anatomy. Cortex 145:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonkhoff AK, Bretzner M, Hong S, Schirmer MD, Cohen A, Regenhardt RW, Donahue KL, Nardin MJ, Dalca AV, Giese AK et al (2022) Sex-specific lesion pattern of functional outcomes after stroke. Brain Commun. 4:020

    Article  Google Scholar 

  • Bowren M, Bruss J, Manzel K, Edwards D, Liu C, Corbetta M, Tranel D, Boes AD (2022) Post-stroke outcomes predicted from multivariate lesion-behaviour and lesion network mapping. Brain 145:1338–1353

    Article  PubMed  PubMed Central  Google Scholar 

  • Boyd LA, Hayward KS, Ward NS, Stinear CM, Rosso C, Fisher RJ, Carter AR, Leff AP, Copland DA, Carey LM, Cohen LG, Basso DM, Maguire JM, Cramer SC (2017) Biomarkers of stroke recovery: Consensus-based core recommendations from the stroke recovery and rehabilitation roundtable. Int J Stroke 12:480–493

    Article  PubMed  PubMed Central  Google Scholar 

  • Brodtmann A, Khlif MS, Egorova N, Veldsman M, Bird LJ, Werden E (2020) Dynamic regional brain atrophy rates in the first year after ischemic stroke. Stroke 51:e183–e192

    Article  PubMed  Google Scholar 

  • Bryce NV, Flournoy JC, Guassi Moreira JF, Rosen ML, Sambook KA, Mair P, McLaughlin KA (2021) Brain parcellation selection: An overlooked decision point with meaningful effects on individual differences in resting-state functional connectivity. Neuroimage 243:118487

    Article  PubMed  Google Scholar 

  • Calesella F, Testolin A, Grazia DFD (2021) A comparison of feature extraction methods for prediction of neuropsychological scores from functional connectivity data of stroke patients. Brain Inform 8:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Caspers S, Eichkhoff SB, Geyer S, Scheperjans F, Mohlberg H, Zilles K, Amunts K (2008) The human inferior parietal lobule in stereotaxic space. Brain Struct Funct 212:481–495

    Article  PubMed  Google Scholar 

  • Cheetham AH, Hazel JE (1969) Binary (presence-absence) similarity coefficients. J Paleontol 43:1130–1136

    Google Scholar 

  • Ciceron C, Sappey-Marinier D, Riffo P, Bellaiche S, Kocevar G, Hannoun S, Stamile C, Redoute J, Cotton F, Revol P, Andre-Obadia N, Luaute J, Rode G (2022) Case Report: true motor recovery of upper limb beyond 5 years post-stroke. Front Neurol 13:804528

    Article  PubMed  PubMed Central  Google Scholar 

  • Crafton KR, Mark AN, Cramer SC (2003) Improved understanding of cortical injury by incorporating measures of functional anatomy. Brain 126:1650–1659

    Article  PubMed  Google Scholar 

  • Destrieux C, Fischl B, Dale A, Halgren E (2010) Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53:1–15

    Article  PubMed  Google Scholar 

  • Duering M, Righart R, Wollenweber FA, Zietemann V, Gesierich B, Dichgans M (2015) Acute infarcts cause focal thinning in remote cortex via degeneration of connecting fiber tracts. Neurology 84:1685–1692

    Article  PubMed  PubMed Central  Google Scholar 

  • Egorova-Brumley N, Khlif MS, Werden E, Bird LJ, Brodtmann A (2022) Grey and white matter atrophy 1 year after stroke aphasia. Brain Commun. 4:061

    Article  Google Scholar 

  • Egorova N, Dhollander T, Khlif MS, Khan W, Werden E, Brodtmann A (2020) Pervasive white matter fiber degeneration in ischemic stroke. Stroke 51:1507–1513

    Article  PubMed  Google Scholar 

  • Fan F, Zhu C, Chen H, Qin W, Ji X, Wang L, Zhang Y, Zhu L, Yu C (2013) Dynamic brain structural changes after left hemisphere subcortical stroke. Hum Brain Mapp 34:1872–1881

    Article  PubMed  Google Scholar 

  • Fan L, Li H, Zhuo J, Zhang Y, Wang J, Chen L, Yang Z, Chu C, Xie S, Laird AR, Fox PT, Eickhoff SB, Yu C, Jiang T (2016) The human brainnetome atlas: a new brain atlas based on connectional architecture. Cereb Cortex 26:3508–3526

    Article  PubMed  PubMed Central  Google Scholar 

  • Farrance I, Frenkel R (2012) Uncertainty of Measurement: A Review of the Rules for Calculating Uncertainty Components through Functional Relationships. Clin Biochem Rev 33:49–75

    PubMed  PubMed Central  Google Scholar 

  • Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA (1987) MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 149:351–356

    Article  CAS  PubMed  Google Scholar 

  • Feng W, Wang J, Chhatbar PY, Doughty C, Landsittel D, Lioutas VA, Kautz SA, Schlaug G (2015) Corticospinal tract lesion load: An imaging biomarker for stroke motor outcomes. Ann Neurol 78:860–870

    Article  PubMed  PubMed Central  Google Scholar 

  • Fiez JA, Damasio H, Grabowski TJ (2000) Lesion segmentation and manual warping to a reference brain: intra- and interobserver reliability. Hum Brain Mapp 9:192–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forkel SJ, Catani M (2018) Lesion mapping in acute stroke aphasia and its implications for recovery. Neuropsychologia 115:88–100

    Article  PubMed  PubMed Central  Google Scholar 

  • Foulon C, Cerliani L, Kinkingnehun S, Levy R, Rosso C, Urbanski M, Volle E, Thiebaut de Schotten M (2018) Advanced lesion symptom mapping analyses and implementation as BCBtoolkit. Gigascience 7:1–17

    Article  PubMed  Google Scholar 

  • Gajardo-Vidal A, Lorca-Puls DL, Team P, Warner H, Pshdary B, Crinion J, Leff AP, Hope TMH, Geva S, Seghier ML, Green DW, Bowman H, Price CJ (2021) Damage to Broca’s area does not contribute to long-term speech production outcome after stroke. Brain 144:817–832

    Article  PubMed  PubMed Central  Google Scholar 

  • Geller J, Thye M, Mirman D (2019) Estimating effects of graded white matter damage and binary tract disconnection on post-stroke language impairment. Neuroimage 189:248–257

    Article  PubMed  Google Scholar 

  • Geva S, Truneh T, Seghier ML, Hope TMH, Leff AP, Crinion JT, Gajardo-Vidal A, Lorca-Puls DL, Green DW, PLORAS, t., Price, C.J., (2021) Lesions that do and do not impair digit span: A study of 816 stroke survivors. Brain Communications. 3:2

    Article  Google Scholar 

  • Godefroy O, Duhamel A, Leclerc X, Saint Michel T, Henon H, Leys D (1998) Brain-behaviour relationships Some models and related statistical procedures for the study of brain-damaged patients. Brain 121:1545–1556

    Article  PubMed  Google Scholar 

  • Gordon EM, Laumann TO, Adeyemo B, Huckins JF, Kelley WM, Petersen SE (2016) Generation and Evaluation of a Cortical Area Parcellation from Resting-State Correlations. Cereb Cortex 26:288–303

    Article  PubMed  Google Scholar 

  • Greene C, Cieslak M, Volz LJ, Hensel L, Grefkes C, Rose K, Grafton ST (2019) Finding maximally disconnected subnetworks with shortest path tractography. Neuroimage Clin 23:101903

    Article  PubMed  PubMed Central  Google Scholar 

  • Gregoire SM, Chaudhary UJ, Brown MM, Yousry TA, Kallis C, Jäger HR, Werring DJ (2009) The Microbleed Anatomical Rating Scale (MARS): reliability of a tool to map brain microbleeds. Neurology 73:1759–1766

    Article  CAS  PubMed  Google Scholar 

  • Griffis JC, Metcalf NV, Corbetta M, Shulman GL (2019) Structural disconnections explain brain network dysfunction after stroke. Cell Rep 28:2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffis JC, Metcalf NV, Corbetta M, Shulman GL (2021) Lesion Quantification Toolkit: A MATLAB software tool for estimating grey matter damage and white matter disconnections in patients with focal brain lesions. Neuroimage Clin 30:102639

    Article  PubMed  PubMed Central  Google Scholar 

  • Gryska E, Schneiderman J, Bjorkman-Burtscher I, Heckemann RA (2021) Automatic brain lesion segmentation on standard magnetic resonance images: a scoping review. BMJ Open 11:e042660

    Article  PubMed  PubMed Central  Google Scholar 

  • Guggisberg AG, Koch PJ, Hummel FC, Buetefisch CM (2019) Brain networks and their relevance for stroke rehabilitation. Clin Neurophysiol 130:1098–1124

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill AB (1965) The environment and disease: association or causation? Proc R Soc Med 58:295–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hinds O, Polimeni JR, Rajendran N, Balasubramanian M, Amunts K, Zilles K, Schwartz EL, Fischl B, Triantafyllou C (2009) Locating the functional and anatomical boundaries of human primary visual cortex. Neuroimage 46:915–922

    Article  PubMed  Google Scholar 

  • Hope TM, Seghier ML, Prejawa S, Leff A, Price CJ (2016) Distinguishing the effect of lesion load from tract disconnection in the arcuate and uncinate fasciculi. Neuroimage 125:1169–1173

    Article  PubMed  Google Scholar 

  • Hope TMH, Seghier ML, Leff AP, Price CJ (2013) Predicting outcome and recovery after stroke with lesions extracted from MRI images. Neuroimage Clinical. 2:424–433

    Article  PubMed  PubMed Central  Google Scholar 

  • Hope TMH, Leff AP, Prejawa S, Bruce R, Haigh Z, Lim L, Ramsden S, Oberhuber M, Ludersdorfer P, Crinion J, Seghier ML, Price CJ (2017) Right hemisphere structural adaptation and changing language skills years after left hemisphere stroke. Brain 140:1718–1728

    Article  PubMed  PubMed Central  Google Scholar 

  • Hope TMH, Leff AP, Price CJ (2018) Predicting language outcomes after stroke: Is structural disconnection a useful predictor? Neuroimage Clin 19:22–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Hubalek Z (1982) Coefficients of association and similarity, based on binary (presence-absence) data: an evaluation. Biol Rev Camb Philos Soc 57:669–689

    Article  Google Scholar 

  • Ito KL, Kumar A, Zavaliangos-Petropulu A, Cramer SC, Liew SL (2018) Pipeline for Analyzing Lesions After Stroke (PALS). Front Neuroinform 12:63

    Article  PubMed  PubMed Central  Google Scholar 

  • Ito KL, Kim HG, Liew S-L (2019) A comparison of automated lesion segmentation approaches for chronic stroke T1-weighted MRI data. Hum Brain Mapp 40:4669–4685

    Article  PubMed  PubMed Central  Google Scholar 

  • Ito KL, Kim B, Liu J, Soekadar SR, Winstein C, Yu C, Cramer SC, Schweighofer N, Liew SL (2022) Corticospinal tract lesion load originating from both ventral premotor and primary motor cortices are associated with post-stroke motor severity. Neurorehabil Neural Repair 36:179–182

    Article  PubMed  Google Scholar 

  • James GA, Hazaroglu O, Bush KA (2016) A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data. Magn Reson Imaging 34:209–218

    Article  PubMed  Google Scholar 

  • Kasties V, Karnath HO, Sperber C (2021) Strategies for feature extraction from structural brain imaging in lesion-deficit modelling. Hum Brain Mapp 42:5409–5422

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolskar KK, Ulrichsen KM, Richard G, Dorum ES, de Schotten MT, Rokicki J, Monereo-Sanchez J, Engvig A, Hansen HI, Nordvik JE, Westlye LT, Alnaes D (2022) Structural disconnectome mapping of cognitive function in poststroke patients. Brain Behav 12:e2707

    Article  PubMed  PubMed Central  Google Scholar 

  • Korhonen O, Saarimaki H, Glerean E, Sams M, Saramaki J (2017) Consistency of Regions of Interest as nodes of fMRI functional brain networks. Netw Neurosci 1:254–274

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuceyeski A, Maruta J, Relkin N, Raj A (2013) The Network Modification (NeMo) Tool: elucidating the effect of white matter integrity changes on cortical and subcortical structural connectivity. Brain Connect 3:451–463

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuhn MJ, Mikulis DJ, Ayoub DM, Kosofsky BE, Davis KR, Taveras JM (1989) Wallerian degeneration after cerebral infarction: evaluation with sequential MR imaging. Radiology 172:179–182

    Article  CAS  PubMed  Google Scholar 

  • Lam TK, Binns MA, Honjo K, Dawson DR, Ross B, Stuss DT, Black SE, Chen JJ, Fujioka T, Chen JL (2018) Variability in stroke motor outcome is explained by structural and functional integrity of the motor system. Sci Rep 8:9480

    Article  PubMed  PubMed Central  Google Scholar 

  • Langen CD, Cremers LGM, de Groot M, White T, Ikram MA, Niessen WJ, Vernooij MW (2018) Disconnection due to white matter hyperintensities is associated with lower cognitive scores. Neuroimage 183:745–756

    Article  PubMed  Google Scholar 

  • Liang KY, Zeger SL, Qaqish B (1992) Multivariate regression analyses for categorical data. journal of the royal statistical society. Series B 54:3–40

    Google Scholar 

  • Liew SL, Anglin JM, Banks NW, Sondag M, Ito KL, Kim H, Chan J, Ito J, Jung C, Khoshab N et al (2018) A large, open source dataset of stroke anatomical brain images and manual lesion segmentations. Sci Data 5:180011

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin DJ, Cloutier AM, Erler KS, Cassidy JM, Snider SB, Ranford J, Parlman K, Giatsidis F, Burke JF, Schwamm LH, Finklestein SP, Hochberg LR, Cramer SC (2019) Corticospinal tract injury estimated from acute stroke imaging predicts upper extremity motor recovery after stroke. Stroke 50:3569–3577

    Article  PubMed  PubMed Central  Google Scholar 

  • Lipkin B, Tuckute G, Affourtit J, Small H, Mineroff Z, Kean H, Jouravlev O, Rakocevic L, Pritchett B, Siegelman M et al (2022) Probabilistic atlas for the language network based on precision fMRI data from >800 individuals. Sci Data 9:529

    Article  PubMed  PubMed Central  Google Scholar 

  • Mah YH, Husain M, Rees G, Nachev P (2014) Human brain lesion-deficit inference remapped. Brain 137:2522–2531

    Article  PubMed  PubMed Central  Google Scholar 

  • Marchina S, Zhu LL, Norton A, Zipse L, Wan CY, Schlaug G (2011) Impairment of speech production predicted by lesion load of the left arcuate fasciculus. Stroke 42:2251–2256

    Article  PubMed  PubMed Central  Google Scholar 

  • Melhem ER, Herskovits EH, Karli-Oguz K, Golay X, Hammoud DA, Fortman BJ, Munter FM, Itoh R (2003) Defining thresholds for changes in size of simulated T2-hyperintense brain lesions on the basis of qualitative comparisons. AJR Am J Roentgenol 180:65–69

    Article  PubMed  Google Scholar 

  • Moghimi P, Dang AT, Do Q, Netoff TI, Lim KO, Atluri G (2022) Evaluation of functional MRI-based human brain parcellation: a review. J Neurophysiol 128:197–217

    Article  PubMed  Google Scholar 

  • Moulton E, Valabregue R, Diaz B, Kemlin C, Leder S, Lehericy S, Samson Y, Rosso C (2018) Comparison of spatial normalization strategies of diffusion MRI data for studying motor outcome in subacute-chronic and acute stroke. Neuroimage 183:186–199

    Article  PubMed  Google Scholar 

  • Munsch F, Sagnier S, Asselineau J, Bigourdan A, Guttmann CR, Debruxelles S, Poli M, Renou P, Perez P, Dousset V, Sibon I, Tourdias T (2016) Stroke location is an independent predictor of cognitive outcome. Stroke 47:66–73

    Article  CAS  PubMed  Google Scholar 

  • Naeser MA, Palumbo CL, Prete MN, Fitzpatrick PM, Mimura M, Samaraweera R, Albert ML (1998) Visible changes in lesion borders on CT scan after five years poststroke, and long-term recovery in aphasia. Brain Lang 62:1–28

    Article  CAS  PubMed  Google Scholar 

  • Pappas I, Hector H, Haws K, Curran B, Kayser AS, D’Esposito M (2021) Improved normalization of lesioned brains via cohort-specific templates. Hum Brain Mapp 42:4187–4204

    Article  PubMed  PubMed Central  Google Scholar 

  • Pustina D, Avants B, Faseyitan OK, Medaglia JD, Coslett HB (2018) Improved accuracy of lesion to symptom mapping with multivariate sparse canonical correlations. Neuropsychologia 115:154–166

    Article  PubMed  Google Scholar 

  • Rademacher J, Galaburda AM, Kennedy DN, Filipek PA, Caviness VSJ (1992) Human cerebral cortex: localization, parcellation, and morphometry with magnetic resonance imaging. J Cogn Neurosci 4:352–374

    Article  CAS  PubMed  Google Scholar 

  • Radwan AM, Sunaert S, Schilling K, Descoteaux M, Landman BA, Vandenbulcke M, Theys T, Dupont P, Emsell L (2022) An atlas of white matter anatomy, its variability, and reproducibility based on constrained spherical deconvolution of diffusion MRI. Neuroimage 254:119029

    Article  PubMed  Google Scholar 

  • Riley JD, Le V, Der-Yeghiaian L, See J, Newton JM, Ward NS, Cramer SC (2011) Anatomy of stroke injury predicts gains from therapy. Stroke 42:421–426

    Article  PubMed  Google Scholar 

  • Ripolles P, Marco-Pallares J, Miro J, de Diego-Balaguer R, Falip M, Juncadella M, Rubio F, Rodriguez-Fornells A (2012) Analysis of automated methods for spatial normalisation of lesioned brains. Neuroimage 60:1296–1306

    Article  CAS  PubMed  Google Scholar 

  • Salah Khlif M, Egorova-Brumley N, Bird LJ, Werden E, Brodtmann A (2022) Cortical thinning 3 years after ischaemic stroke is associated with cognitive impairment and APOE epsilon4. Neuroimage Clin 36:103200

    Article  PubMed  PubMed Central  Google Scholar 

  • Saltao da Silva MA, Baune NA, Belagaje S, Borich MR (2022) Clinical imaging-derived metrics of corticospinal tract structural integrity are associated with post-stroke motor outcomes: a retrospective study. Front Neurol 13:804133

    Article  PubMed  PubMed Central  Google Scholar 

  • Salvalaggio A, Grazia DFD, M., Zorzi, M., Thiebaut de Schotten, M., Corbetta, M., (2020) Post-stroke deficit prediction from lesion and indirect structural and functional disconnection. Brain 143:2173–2188

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaefer A, Kong R, Gordon EM, Laumann TO, Zuo XN, Holmes AJ, Eickhoff SB, Yeo BTT (2018) Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI. Cereb Cortex 28:3095–3114

    Article  PubMed  Google Scholar 

  • Schilling, K.G., Rheault, F., Petit, L., Hansen, C.B., Nath, V., Yeh, F.C., Girard, G., Barakovic, M., Rafael-Patino, J., Yu, T., et al., (2021). Tractography dissection variability: What happens when 42 groups dissect white matter bundles on the same dataset? Neuroimage. 243, 118502.

  • Schulz R, Koch P, Zimerman M, Wessel M, Bonstrup M, Thomalla G, Cheng B, Gerloff C, Hummel FC (2015) Parietofrontal motor pathways and their association with motor function after stroke. Brain 138:1949–1960

    Article  PubMed  Google Scholar 

  • Schurz M, Tholen MG, Perner J, Mars RB, Sallet J (2017) Specifying the brain anatomy underlying temporo-parietal junction activations for theory of mind: A review using probabilistic atlases from different imaging modalities. Hum Brain Mapp 38:4788–4805

    Article  PubMed  PubMed Central  Google Scholar 

  • Seghier ML, Neufeld NH, Zeidman P, Leff AP, Mechelli A, Nagendran A, Riddoch JM, Humphreys GW, Price CJ (2012) Reading without the left ventral occipito-temporal cortex. Neuropsychologia 50:3621–3635

    Article  PubMed  Google Scholar 

  • Seghier ML, Ramsden S, Lim L, Leff AP, Price CJ (2014) Gradual lesion expansion and brain shrinkage years after stroke. Stroke 45:877–879

    Article  PubMed  Google Scholar 

  • Seitzman BA, Gratton C, Marek S, Raut RV, Dosenbach NUF, Schlaggar BL, Petersen SE, Greene DJ (2020) A set of functionally-defined brain regions with improved representation of the subcortex and cerebellum. Neuroimage 206:116290

    Article  PubMed  Google Scholar 

  • Siddiqi SH, Kording KP, Parvizi J, Fox MD (2022) Causal mapping of human brain function. Nat Rev Neurosci 23:361–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel JS, Ramsey LE, Snyder AZ, Metcalf NV, Chacko RV, Weinberger K, Baldassarre A, Hacker CD, Shulman GL, Corbetta M (2016) Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke. Proc Natl Acad Sci U S A 113:E4367–E4376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson G (1960) Notes on the measurement of faunal resemblance. Am J Sci 258:675

    Google Scholar 

  • Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci U S A 106:13040–13045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soille P (2003) Morphological image analysis. In: Din M (ed) Principles and Applications. Springer-Verlag, New York

    Google Scholar 

  • Soros P, Teasell R, Hanley DF, Spence JD (2017) Motor recovery beginning 23 years after ischemic stroke. J Neurophysiol 118:778–781

    Article  PubMed  PubMed Central  Google Scholar 

  • Sperber C (2020) Rethinking causality and data complexity in brain lesion-behaviour inference and its implications for lesion-behaviour modelling. Cortex 126:49–62

    Article  PubMed  Google Scholar 

  • Sperber C (2022) The strange role of brain lesion size in cognitive neuropsychology. Cortex 146:216–226

    Article  PubMed  Google Scholar 

  • Suarez LE, Markello RD, Betzel RF, Misic B (2020) Linking Structure and Function in Macroscale Brain Networks. Trends Cogn Sci 24:302–315

    Article  PubMed  Google Scholar 

  • Thiebaut de Schotten M, Ffytche DH, Bizzi A, Dell’Acqua F, Allin M, Walshe M, Murray R, Williams SC, Murphy DG, Catani M (2011) Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography. Neuroimage 54:49–59

    Article  PubMed  Google Scholar 

  • Thiebaut de Schotten M, Tomaiuolo F, Aiello M, Merola S, Silvetti M, Lecce F, Bartolomeo P, Doricchi F (2014) Damage to white matter pathways in subacute and chronic spatial neglect: a group study and 2 single-case studies with complete virtual “in vivo” tractography dissection. Cereb Cortex 24:691–706

    Article  PubMed  Google Scholar 

  • Thomalla G, Glauche V, Weiller C, Rother J (2005) Time course of wallerian degeneration after ischaemic stroke revealed by diffusion tensor imaging. J Neurol Neurosurg Psychiatry 76:266–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toba MN, Godefroy O, Rushmore RJ, Zavaglia M, Maatoug R, Hilgetag CC, Valero-Cabre A (2020) Revisiting “brain modes” in a new computational era: approaches for the characterization of brain-behavioural associations. Brain 143:1088–1098

    Article  PubMed  Google Scholar 

  • Todeschini R, Consonni V, Xiang H, Holliday J, Buscema M, Willett P (2012) Similarity coefficients for binary chemoinformatics data: overview and extended comparison using simulated and real data sets. J Chem Inf Model 52:2884–2901

    Article  CAS  PubMed  Google Scholar 

  • Tsapkini K, Vindiola M, Rapp B (2011) Patterns of brain reorganization subsequent to left fusiform damage: fMRI evidence from visual processing of words and pseudowords, faces and objects. Neuroimage 55:1357–1372

    Article  PubMed  Google Scholar 

  • Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289

    Article  CAS  PubMed  Google Scholar 

  • Valdes Hernandez MDC, Grimsley-Moore T, Chappell FM, Thrippleton MJ, Armitage PA, Sakka E, Makin S, Wardlaw JM (2021) Post-stroke cognition at 1 and 3 years is influenced by the location of white matter hyperintensities in patients with lacunar stroke. Front Neurol 12:634460

    Article  PubMed  PubMed Central  Google Scholar 

  • Vinckier F, Dehaene S, Jobert A, Dubus JP, Sigman M, Cohen L (2007) Hierarchical coding of letter strings in the ventral stream: dissecting the inner organization of the visual word-form system. Neuron 55:143–156

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Juliano JM, Liew SL, McKinney AM, Payabvash S (2019) Stroke atlas of the brain: Voxel-wise density-based clustering of infarct lesions topographic distribution. Neuroimage Clin 24:101981

    Article  PubMed  PubMed Central  Google Scholar 

  • Wawrzyniak M, Stockert A, Klingbeil J, Saur D (2022) Voxelwise structural disconnection mapping: Methodological validation and recommendations. Neuroimage Clin 35:103132

    Article  PubMed  PubMed Central  Google Scholar 

  • Wild HM, Heckemann RA, Studholme C, Hammers A (2017) Gyri of the human parietal lobe: volumes, spatial extents, automatic labelling, and probabilistic atlases. PLoS ONE 12:e0180866

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilke M, de Haan B, Juenger H, Karnath H-O (2011) Manual, semi-automated, and automated delineation of chronic brain lesions: a comparison of methods. Neuroimage 56:2038–2046

    Article  PubMed  Google Scholar 

  • Wilmskoetter J, Fridriksson J, Basilakos A, Phillip Johnson L, Marebwa B, Rorden C, Warner G, Hickok G, Hillis AE, Bonilha L (2021) indirect white matter pathways are associated with treated naming improvement in aphasia. Neurorehabil Neural Repair 35:346–355

    Article  PubMed  PubMed Central  Google Scholar 

  • Yaremych HE, Preacher KJ, Hedeker D (2021) Centering categorical predictors in multilevel models: Best practices and interpretation. Psychol Methods. https://doi.org/10.1037/met0000434

    Article  PubMed  Google Scholar 

  • Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD (2011) Large-scale automated synthesis of human functional neuroimaging data. Nat Methods 8:665–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh FC, Panesar S, Fernandes D, Meola A, Yoshino M, Fernandez-Miranda JC, Vettel JM, Verstynen T (2018) Population-averaged atlas of the macroscale human structural connectome and its network topology. Neuroimage 178:57–68

    Article  PubMed  Google Scholar 

  • Zayed A, Iturria-Medina Y, Villringer A, Sehm B, Steele CJ (2020) Rapid Quantification of White Matter Disconnection in the Human Brain. Annu Int Conf IEEE Eng Med Biol Soc 2020:1701–1704

    PubMed  Google Scholar 

  • Zhang J, Zhang Y, Xing S, Liang Z, Zeng J (2012) Secondary neurodegeneration in remote regions after focal cerebral infarction: a new target for stroke management? Stroke 43:1700–1705

    Article  PubMed  Google Scholar 

  • Zhao Y, Halai AD, Lambon Ralph MA (2020) Evaluating the granularity and statistical structure of lesions and behaviour in post-stroke aphasia. Brain Commun. 2:062

    Article  Google Scholar 

  • Zhong AJ, Baldo JV, Dronkers NF, Ivanova MV (2022) The unique role of the frontal aslant tract in speech and language processing. Neuroimage Clin 34:103020

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu LL, Lindenberg R, Alexander MP, Schlaug G (2010) Lesion load of the corticospinal tract predicts motor impairment in chronic stroke. Stroke 41:910–915

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

 This work was funded by Khalifa University (grant number:  FSU-2022-006 and RC2-2018-022).

Author information

Authors and Affiliations

Authors

Contributions

M.L.S. wrote and revised the manuscript.

Corresponding author

Correspondence to Mohamed L. Seghier.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Ethical approval

For this work, formal consent is not required.

Human and animal rights

This review article does not contain any data from human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seghier, M.L. The elusive metric of lesion load. Brain Struct Funct 228, 703–716 (2023). https://doi.org/10.1007/s00429-023-02630-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-023-02630-1

Keywords

Navigation