Skip to main content
Log in

A network approach to brain form, cortical topology and human evolution

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Network analysis provides a quantitative tool to investigate the topological properties of a system. In anatomy, it can be employed to investigate the spatial organization of body parts according to their contiguity and patterns of physical contact. In this study, we build a model representing the spatial adjacency of the major regions of the human brain often considered in evolutionary neuroanatomy, to analyse its topological features. Results suggest that the frontal lobe is topologically independent of the posterior regions of the brain, which in turn are more integrated and influenced by reciprocal constraints. The precentral gyrus represents a hinge between the anterior and posterior blocks. The lateral temporal cortex is particularly influenced by the neighbouring regions, while the parietal cortex is minimally constrained by the overall brain organization. Beyond the reciprocal spatial influences among cortical areas, brain form is further constrained by spatial and mechanical influence of the braincase, including bone and connective elements. The anterior fossa and the parietal bones are the elements more sensitive to the brain–braincase spatial organization. These topological properties must be properly considered when making inferences on evolutionary variations and macroscopic differences of the human brain morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen JS, Damasio H, Grabowski TJ (2002) Normal neuroanatomical variation in the human brain: an MRI-volumetric study. Am J Phys Anthropol 118:341–358

    Article  PubMed  Google Scholar 

  • Ardesch DJ, Scholtens LH, Li L, Preuss TM, Rilling JK, van den Heuvel MP (2019) Evolutionary expansion of connectivity between multimodal association areas in the human brain compared with chimpanzees. Proc Natl Acad Sci USA 116:7101–7106

    Article  CAS  PubMed  Google Scholar 

  • Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media

  • Bastir M, Rosas A (2005) Hierarchical nature of morphological integration and modularity in the human posterior face. Am J Phys Anthropol 128:26–34

    Article  PubMed  Google Scholar 

  • Bastir M, Rosas A, Kuroe K (2004) Petrosal orientation and mandibular ramus breadth: evidence for an integrated petroso-mandibular developmental unit. Am J Phys Anthropol 123:340–350

    Article  PubMed  Google Scholar 

  • Bastir M, Rosas A, O’Higgins P (2006) Craniofacial levels and the morphological maturation of the human skull: spatiotemporal pattern of cranial ontogeny. J Anat 209:637–654

    Article  PubMed  PubMed Central  Google Scholar 

  • Bastir M, Rosas A, Lieberman DE, O’Higgins P (2008) Middle cranial fossa and the origin of modern humans. Anat Rec 291:130–140

    Article  Google Scholar 

  • Bastir M, Rosas A, Gunz P, Peña-Melian A, Manzi G, Harvati K, Kruszynski R, Stringer C, Hublin JJ (2011) Evolution of the base of the brain in highly encephalized human species. Nat Commun 2:588

    Article  CAS  PubMed  Google Scholar 

  • Bayly PV, Taber LA, Kroenke CD (2014) Mechanical forces in cerebral cortical folding: a review of measurements and models. J Mech Behav Biomed Mater 29:568–581

    Article  CAS  PubMed  Google Scholar 

  • Bonacich P (1987) Power and centrality: a family of measures. Am J Sociol 92:1170–1182

    Article  Google Scholar 

  • Bonacich P, Lloyd P (2001) Eigenvector-like measures of centrality for asymmetric relations. Soc Netw 23:191–201

    Article  Google Scholar 

  • Bruner E (2004) Geometric morphometrics and paleoneurology: brain shape evolution in the genus Homo. J Hum Evol 47:279–303

    Article  PubMed  Google Scholar 

  • Bruner E (2014) Functional craniology, human evolution, and anatomical constraints in the Neanderthal braincase. In: Akazawa T, Ogihara N, Tanabe HC, Terashima H (eds) Dynamics of learning in Neanderthals and modern humans, vol 2. Springer, Tokyo, pp 121–129

    Chapter  Google Scholar 

  • Bruner E (2015) Functional craniology and brain evolution. In: Bruner E (ed) Human Paleoneurology. Springer, Cham, pp 57–94

    Google Scholar 

  • Bruner E (2017a) The fossil evidence of human brain evolution. In: Kaas J (ed) Evolution of nervous systems 2e, vol 4. Elsevier, Oxford, pp 63–92

    Chapter  Google Scholar 

  • Bruner E (2017b) Language, paleoneurology, and the fronto-parietal system. Front Hum Neurosci 11:349

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruner E (2018a) Human paleoneurology and the evolution of the parietal cortex. Brain Behav Evol 91:136–147

    Article  PubMed  Google Scholar 

  • Bruner E (2018b) The brain, the braincase, and the morphospace. In: Bruner E, Ogihara N, Tanabe HC (eds) Digital endocasts. From skulls to brains. Springer, Tokyo, pp 93–114

    Chapter  Google Scholar 

  • Bruner E (2019) Human paleoneurology: shaping cortical evolution in fossil hominids. J Comp Neurol. https://doi.org/10.1002/cne.24591

    Article  PubMed  Google Scholar 

  • Bruner E, Holloway R (2010) Bivariate approach to the widening of the frontal lobes in the genus Homo. J Hum Evol 58:138–146

    Article  PubMed  Google Scholar 

  • Bruner E, De la Cuétara JM, Masters M, Amano H, Ogihara N (2014) Functional craniology and brain evolution: from paleontology to biomedicine. Front Neuroanat 8:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruner E, Amano H, de la Cuétara JM, Ogihara N (2015) The brain and the braincase: a spatial analysis on the midsagittal profile in adult humans. J Anat 227:268–276

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruner E, Pereira-Pedro AS, Chen X, Rilling JK (2017a) Precuneus proportions and cortical folding: a morphometric evaluation on a racially diverse human sample. Ann Anat 211:120–128

    Article  PubMed  Google Scholar 

  • Bruner E, Pereira-Pedro AS, Bastir M (2017b) Patterns of morphological integration between parietal and temporal areas in the human skull. J Morphol 278:1312–1320

    Article  PubMed  Google Scholar 

  • Bruner E, Esteve-Altava B, Rasskin-Gutman D (2018) Networking brains: modeling spatial relationships of the cerebral cortex. In: Bruner E, Ogihara N, Tanabe HC (eds) Digital endocasts. From skulls to brains. Springer, Tokyo, pp 191–204

    Chapter  Google Scholar 

  • Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network. Anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38

    Article  PubMed  Google Scholar 

  • Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198

    Article  CAS  PubMed  Google Scholar 

  • Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13:336–349

    Article  CAS  PubMed  Google Scholar 

  • Butts CT (2009) Revisiting the foundations of network analysis. Science 325:414–416

    Article  CAS  PubMed  Google Scholar 

  • Caminiti R, Innocenti GM, Battaglia-Mayer A (2015) Organization and evolution of parieto-frontal processing streams in macaque monkeys and humans. Neurosci Biobehav Rev 56:73–96

    Article  PubMed  Google Scholar 

  • Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129:564–583

    Article  Google Scholar 

  • Chen CH, Gutierrez ED, Thompson W, Panizzon MS, Jernigan TL, Eyler LT, Fennema-Notestine C, Jak AJ, Neale MC, Franz CE, Lyons MJ, Grant MD, Fischl B, Seidman LJ, Tsuang MT, Kremen WS, Dale AM (2012) Hierarchical genetic organization of human cortical surface area. Science 335:1634–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croxson PL, Forkel SJ, Cerliani L, Thiebaut de Schotten M (2018) Structural variability across the primate brain: a cross-species comparison. Cereb Cortex 28:3829–3841

    Article  PubMed  Google Scholar 

  • Csardi G, Nepusz T (2006) The igraph software package for complex network research. Int J Complex Syst 1695:1–9

    Google Scholar 

  • Damasio H (2005) Human brain anatomy in computerized images. Oxford University Press, Oxford

    Book  Google Scholar 

  • Dos Santos DA, Fratani J, Ponssa ML, Abdala V (2017) Network architecture associated with the highly specialized hindlimb of frogs. PLoS One 12:e0177819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esteve-Altava B (2017a) Challenges in identifying and interpreting organizational modules in morphology. J Morphol 278:960–974

    Article  PubMed  Google Scholar 

  • Esteve-Altava B (2017b) In search of morphological modules: a systematic review. Biol Rev 92:1332–1347

    Article  PubMed  Google Scholar 

  • Esteve-Altava B, Rasskin-Gutman D (2014) Beyond the functional matrix hypothesis: a network null model of human skull growth for the formation of bone articulations. J Anat 225:306–316

    Article  PubMed  PubMed Central  Google Scholar 

  • Esteve-Altava B, Rasskin-Gutman D (2018) Anatomical network analysis in evo-devo. In: Nuño de la Rosa L, Müller GB (eds) Evolutionary developmental biology. Springer, Cham

    Google Scholar 

  • Esteve-Altava B, Marugán-Lobón J, Botella H, Rasskin-Gutman D (2011) Network models in anatomical systems. J Anthropol Sci 89:175–184

    PubMed  Google Scholar 

  • Esteve-Altava B, Marugán-Lobón J, Botella H, Bastir M, Rasskin-Gutman D (2013) Grist for Riedl’s Mill: a network model perspective on the integration and modularity of the human skull. J Exp Zool 320:489–500

    Article  Google Scholar 

  • Freeman L (1977) A set of measures of centrality based on betweenness. Sociometry 40:35–41

    Article  Google Scholar 

  • Garcia KE, Kroenke CD, Bayly PV (2019) Mechanics of cortical folding: stress, growth and stability. Phil Trans R Soc B 373:20170321

    Article  Google Scholar 

  • Ghosh R, Lerman K (2011) A parametrized centrality metric for network analysis. Phys Rev 83:066118

    Google Scholar 

  • Ghosh R, Lerman K (2014) Rethinking centrality: the role of dynamical processes in social network analysis. Disc Cont Dyn Syst 19:1355–1372

    Article  Google Scholar 

  • Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, Evans AC, Rapoport JL (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2:861–863

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Robles A, Hopkins WD, Schapiro SJ, Sherwood CC (2015) Relaxed genetic control of cortical organization in human brains compared with chimpanzees. Proc Natl Acad Sci USA 112:14799–14804

    Article  CAS  PubMed  Google Scholar 

  • Goriely A, Geers MGD, Holzapfel GA, Jayamohan J, Jérusalem A, Sivaloganathan S, Squier W, Van Dommelen JAW, Waters S, Kuhl E (2015) Mechanics of the brains: perspectives, challenges, and opportunities. Biomech Model Mechanobiol 14:931–965

    Article  PubMed  PubMed Central  Google Scholar 

  • Gunz P, Harvati K (2007) The Neanderthal “chignon”: variation, integration, and homology. J Hum Evol 52:262–274

    Article  PubMed  Google Scholar 

  • Gunz P, Tilot AK, Wittfeld K, Teumer A, Shapland CY, van Erp TGM, Dannemann M, Vernot B, Neubauer S, Guadalupe T, Fernández G, Brunner HG, Enard W, Fallon J, Hosten N, Völker U, Profico A, Di Vincenzo F, Manzi G, Kelso J, St Pourcain B, Hublin JJ, Franke B, Pääbo S, Macciardi F, Grabe HJ, Fisher SE (2019) Neandertal introgression sheds light on modern human endocranial globularity. Curr Biol 29:120–127

    Article  CAS  PubMed  Google Scholar 

  • Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:e159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen TF, Solvin TM, Pavlicev M (2019) Predicting evolutionary potential: a numerical test of evolvability measures. Evolution 73:689–703

    Article  PubMed  Google Scholar 

  • Hilgetag CC, Barbas H (2005) Developmental mechanics of the primate cerebral cortex. Anat Embryol 210:411–417

    Article  PubMed  Google Scholar 

  • Hilgetag CC, Barbas H (2006) Role of mechanical factors in the morphology of the primate cerebral cortex. PLoS Comput Biol 2:e22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofman MA (2012) Design principles of the human brain: an evolutionary perspective. Progr Brain Res 195:373–390

    Article  Google Scholar 

  • Holloway RL, Broadfield DC, Yuan MS (2004) Brain endocasts: the paleoneurological evidence. Wiley, Hoboken

    Book  Google Scholar 

  • Huntenburg JM, Bazin PL, Margulies DS (2017) Large-scale gradients in human cortical organization. Trends Cogn Sci 22:21–31

    Article  PubMed  Google Scholar 

  • Kerkman JN, Daffertshofer A, Gollo LL, Breakspear M, Boonstra TW (2018) Network structure of the human musculoskeletal system shapes neural interactions on multiple time scales. Sci Adv 4:eaat0497

    Article  PubMed  PubMed Central  Google Scholar 

  • Knight CG, Pinney JW (2009) Making the right connections: biological networks in the light of evolution. BioEssays 31:1080–1090

    Article  PubMed  PubMed Central  Google Scholar 

  • Lancichinetti A, Radicchi F, Ramasco JJ, Fortunato S (2011) Finding statistically significant communities in networks. PLoS One 6:e18961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landherr A, Friedl B, Heidemann J (2010) A critical review of centrality measures in social networks. Bus Inf Syst Eng 6:371–385

    Article  Google Scholar 

  • Langer N, Pedroni A, Gianotti LRR, Hänggi J, Knoch D, Jäncke L (2012) Functional brain network efficiency predicts intelligence. Hum Brain Mapp 33:1393–1406

    Article  PubMed  Google Scholar 

  • Lieberman DE, Ross CF, Ravosa MJ (2000) The primate cranial base: ontogeny, function, and integration. Yrb Phys Anthropol 43:117–169

    Article  Google Scholar 

  • McCarthy RC (2001) Anthropoid cranial base architecture and scaling relationships. J Hum Evol 40:41–66

    Article  CAS  PubMed  Google Scholar 

  • Meunier D, Lambiotte R, Formito A, Ersche KD, Bullmore ET (2009) Hierarchical modularità in human brain functional networks. Front Neuroinformatics 3:37

    Article  PubMed Central  Google Scholar 

  • Meunier D, Lambiotte R, Bullmore ET (2010) Modular and hierarchically modular organization of brain networks. Front Neurosci 4:200

    Article  PubMed  PubMed Central  Google Scholar 

  • Moss ML, Young RW (1960) A functional approach to craniology. Am J Phys Anthropol 18:281–292

    Article  CAS  PubMed  Google Scholar 

  • Murphy AC, Muldoon SF, Baker D, Lastowka A, Bennett B, Yang M, Bassett DS (2018) Structure, function, and control of the human musculoskeletal network. PLoS Biol 16:e2002811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman MEJ (2005) A measure of betweenness centrality based on random walks. Soc Netw 27:39–54

    Article  Google Scholar 

  • Newman MEL (2018) Networks. Oxford University Press, Oxford

    Book  Google Scholar 

  • Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev 69:026113

    CAS  Google Scholar 

  • Pearce E, Stringer C, Dunbar RIM (2013) New insights into differences in brain organization between Neanderthals and anatomically modern humans. Proc R Soc B 280:20130168

    Article  PubMed  Google Scholar 

  • Pearson A, Bruner E (2018) A preliminary survey on temporal lobes and cranial morphometrics in extant haplorrhines. Folia Primatol 89:207

    Google Scholar 

  • Pereira-Pedro AS, Masters M, Bruner E (2017) Shape analysis of spatial relationships between orbito-ocular and endocranial structures in modern humans and fossil hominids. J Anat 231:947–960

    Article  PubMed  Google Scholar 

  • Proulx SR, Promislow DEL, Phillips PC (2005) Network thinking in ecology and evolution. Trends Ecol Evol 20:345–353

    Article  PubMed  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Radinsky L (1974) The fossil evidence of anthropoid brain evolution. Am J Phys Anthropol 41:15–27

    Article  Google Scholar 

  • Rasskin-Gutman D, Esteve-Altava B (2014) Connecting the dots: anatomical network analysis in morphological EvoDevo. Biol Theor 9:178–193

    Article  Google Scholar 

  • Rasskin-Gutman D, Esteve-Altava B (2018) Concept of burden in evo-devo. In: Nuño de la Rosa L, Müller GB (eds) Evolutionary developmental biology. Springer, Cham

    Google Scholar 

  • Ribas GC, Yasuda A, Ribas EC, Nishikuni K, Rodrigues AJ Jr (2006) Surgical anatomy of microneurosurgical sulcal key points. Neurosurgery 59:177–210

    Google Scholar 

  • Richtsmeier JT, Flaherty K (2013) Hand in glove: brain and skull in development and dysmorphogenesis. Acta Neuropathol 125:469–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richtsmeier JT, Aldridge K, de Leon VB, Panchal J, Kane AA, Marsh JL, Yan P, Cole TM (2006) Phenotypic integration of neurocranium and brain. J Exp Zool 306B:360–378

    Article  Google Scholar 

  • Rohen JW, Yokochi C, Lutjen-Drecoll E (2006) Color atlas of anatomy: a photographic study of the human body. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Rosas A, Peña-Melián A, Garcia-Tabernero A, Bastir M, De La Rasilla M (2014) Temporal lobe sulcal pattern and the bony impressions in the middle cranial fossa: the case of the El Sidrón (Spain) Neandertal sample. Anat Rec 297:2331–2341

    Article  Google Scholar 

  • Semendeferi K, Damasio H (2000) The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging. J Hum Evol 38:317–332

    Article  CAS  PubMed  Google Scholar 

  • Sherwood CC, Gómez-Robles A (2017) Brain plasticity and human evolution. Ann Rev Anthropol 46:399–419

    Article  Google Scholar 

  • Simon HA (1962) The architecture of complexity. Proc Am Philos Soc 106:467–482

    Google Scholar 

  • Smaers JB, Gómez-Robles A, Parks AN, Sherwood CC (2017) Exceptional evolutionary expansion of prefrontal cortex in great apes and humans. Curr Biol 27:714–720

    Article  CAS  PubMed  Google Scholar 

  • Sotero RC, Iturria-Medina Y (2011) From blood oxygenation level dependent (BOLD) signals to brain temperature maps. Bull Math Biol 73:2731–2747

    Article  CAS  PubMed  Google Scholar 

  • Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization, development and functions of complex brain networks. Trend Cogn Sci 8:418–425

    Article  Google Scholar 

  • Tallinen T, Chung JY, Rousseau F, Girard N, Lefèvre J, Mahadevan L (2016) On the growth and form of cortical convolutions. Nat Phys 12:588–593

    Article  CAS  Google Scholar 

  • Toro R (2012) On the possible shapes of the brain. Evol Biol 39:600–612

    Article  Google Scholar 

  • Toro R, Burnod Y (2005) A morphogenetic model for the development of cortical convolutions. Cereb Cortex 15:1900–1913

    Article  PubMed  Google Scholar 

  • Van den Heuvel MP, Mandl RCW, Stam CJ, Kahn RS, Hulshoff Pol HE (2010) Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis. J Neurosci 30:15915–15926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385:313–318

    Article  Google Scholar 

  • Van Essen DC, Dierker DL (2007) Surface-based and probabilistic atlases of primate cerebral cortex. Neuron 56:209–225

    Article  CAS  PubMed  Google Scholar 

  • Van Essen DC, Donahue CJ, Glasser MF (2018) Development and evolution of cerebral and cerebellar cortex. Brain Behav Evol 91:158–169

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner GP, Altenberg L (1996) Complex adaptations and the evolution of evolvability. Evolution 50:967–976

    Article  PubMed  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442

    Article  CAS  Google Scholar 

  • White TD, Folkens PA (2000) Human osteology. Academic Press, London

    Google Scholar 

  • Zilles K, Armstrong E, Schleicher A, Kretschmann HJ (1988) The human pattern of gyrification in the cerebral cortex. Anat Embryol 179:173–179

    Article  CAS  PubMed  Google Scholar 

  • Zilles K, Armstrong E, Moser KH, Schleicher A, Stephan H (1989) Gyrificationin the cerebral cortex of primates. Brain Behav Evol 34:143–150

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

EB is funded by the Spanish Government (PGC2018-093925-B-C31). BE-A has received financial support through the Postdoctoral Junior Leader Fellowship Programme from “la Caixa” Banking Foundation (LCF/BQ/LI18/11630002) and thanks the support of the Unidad de Excelencia María de Maeztu (MDM-2014-0370). DR-G is funded by grant BFU2015-70927-R. We are grateful to the two anonymous reviewers for their comments and suggestions. The authors also thank Transmitting Science for promoting anatomical network analysis and this research project. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emiliano Bruner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruner, E., Esteve-Altava, B. & Rasskin-Gutman, D. A network approach to brain form, cortical topology and human evolution. Brain Struct Funct 224, 2231–2245 (2019). https://doi.org/10.1007/s00429-019-01900-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-019-01900-1

Keywords

Navigation