Skip to main content

The Brain, the Braincase, and the Morphospace

  • Chapter
  • First Online:
Digital Endocasts

Part of the book series: Replacement of Neanderthals by Modern Humans Series ((RNMH))

Abstract

Morphological integration deals with the functional and structural associations, at ontogenetic and evolutionary level, between anatomical traits. Current morphometric tools can be used to analyze anatomical systems in terms of the mutual relationships shared among their components. The brain has no fixed and rigid form, but rather it is largely shaped by a set of mechanical forces involving bones, connectives, and vessels. During morphogenesis, the brain and braincase exert reciprocal influences associated with size and shape changes of soft and hard tissues. The available evidence suggests that such influences are usually based on local interactions, more than on general schemes or long-range effects. The frontal, temporal, and cerebellar lobes have a direct spatial association with the facial block and with the endocranial base, sharing several morphogenetic factors and geometric constraints with these areas. The frontal, parietal, and occipital bones are more directly shaped by the cortical brain surface, but they have constraints associated with bone articulations and reciprocal spatial adjustments. The final phenotype, selected by evolutionary processes, is an admixture of adaptations, secondary consequences, and structural regulations. The set of rules that govern phenotypic variability can be revealed and quantified by using multivariate statistics. The occupation of multivariate morphological space (morphospace) depends on the underlying structural organization and on ecological and phylogenetic constraints. Therefore, the geometric study of morphospace occupation parameters can reveal the rules of variability behind the observed morphological diversity. These intrinsic properties of endocranial variation must be nonetheless interpreted taking into account information from brain, bones, connectives, and vessels, and the data resulting from these quantitative analyses should be used to plan specialized biological surveys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Albrecht GH, Miller JM (1993) Geographic variation in primates: a review with implications for interpreting fossils. In: Kimbel WH, Martin L (eds) Species, species concepts, and primate evolution. Plenum Press, New York, pp 123–161

    Chapter  Google Scholar 

  • Aldridge K, Marsh JL, Govier D, Richtsmeier JT (2002) Central nervous system phenotypes in craniosynostosis. J Anat 201:31–39

    Article  Google Scholar 

  • Allen JS, Damasio H, Grabowski TJ (2002) Normal neuroanatomical variation in the human brain: an MRI-volumetric study. Am J Phys Anthropol 118:341–358

    Article  Google Scholar 

  • Arsuaga JL, Martinez I, Arnold LJ, Aranburu A, Gracia-Tellez A, Sharp WD, Quam RM, Falgueres C, Pantoja-Perez A, Bischoff J, Poza-Rey E, Pares JM, Carretero JM, Demuro M, Lorenzo C, Sala N, Martinon-Torres M, Garcia N, de Velasco A (2014) Neandertal roots: cranial and chronological evidence from Sima de los Huesos. Science 344:1358–1363

    Article  Google Scholar 

  • Baab KL (2016) The role of neurocranial shape in defining the boundaries of an expanded Homo erectus hypodigm. J Hum Evol 92:1–21

    Article  Google Scholar 

  • Barberini F, Bruner E, Cartolari R, Franchitto G, Heyn R, Ricci F, Manzi G (2008) An unusually-wide human bregmatic Wormian bone: anatomy, tomographic description, and possible significance. Surg Radiol Anat 30:683–687

    Article  Google Scholar 

  • Bastir M, Rosas A (2005) Hierarchical nature of morphological integration and modularity in the human posterior face. Am J Phys Anthropol 128:26–34

    Article  Google Scholar 

  • Bastir M, Rosas A (2006) Correlated variation between the lateral basicranium and the face: a geometric morphometric study in different human groups. Arch Oral Biol 51:814–824

    Article  Google Scholar 

  • Bastir M, Rosas A (2009) Mosaic evolution of the basicranium in Homo and its relation to modular development. Evol Biol 36:57–70

    Article  Google Scholar 

  • Bastir M, Rosas A, Kuroe K (2004) Petrosal orientation and mandibular ramus breadth: evidence for an integrated petroso-mandibular developmental unit. Am J Phys Anthropol 123:340–350

    Article  Google Scholar 

  • Bastir M, Rosas A, O’Higgins P (2006) Craniofacial levels and the morphological maturation of the human skull: spatiotemporal pattern of cranial ontogeny. J Anat 209:637–654

    Article  Google Scholar 

  • Bayly PV, Taber LA, Kroenke CD (2014) Mechanical forces in cerebral cortical folding: a review of measurements and models. J Mech Behav Biomed Mater 29:568–581

    Article  Google Scholar 

  • Beaudet A, Bruner E (2017) A frontal lobe surface analysis in three archaic African human fossils: OH 9, Buia, and Bodo. Comptes Redus Palevol 16:499–507

    Google Scholar 

  • Bellary SS, Steinberg A, Mirzayan N, Shirak M, Tubbs RS, Cohen-Gadol AA, Loukas M (2013) Wormian bones: a review. Clin Anat 26:922–927

    Article  Google Scholar 

  • Bienvenu T, Guy F, Coudyzer W et al (2011) Assessing endocranial variations in great apes and humans using 3D data from virtual endocasts. Am J Phys Anthropol 145:231–246

    Article  Google Scholar 

  • Bookstein FL (1991) Morphometric tools for landmark data. Cambridge University Press, New York

    Google Scholar 

  • Bruner E (2004) Geometric morphometrics and paleoneurology: brain shape evolution in the genus Homo. J Hum Evol 47:279–303

    Article  Google Scholar 

  • Bruner E (2013) The species concept as a cognitive tool for biological anthropology. Am J Primatol 75:10–15

    Article  Google Scholar 

  • Bruner E (2014) Functional craniology, human evolution, and anatomical constraints in the Neanderthal braincase. In: Akazawa T, Ogihara N, Tanabe HC, Terashima H (eds) Dynamics of learning in Neanderthals and modern humans, vol 2. Springer, Japan, pp 121–129

    Chapter  Google Scholar 

  • Bruner E (2015) Human paleoneurology. Springer, Switzerland

    Book  Google Scholar 

  • Bruner E, Ripani M (2008) A quantitative and descriptive approach to morphological variation of the endocranial base in modern humans. Am J Phys Anthropol 137:30–40

    Article  Google Scholar 

  • Bruner E, Manzi G, Arsuaga JL (2003) Encephalization and allometric trajectories in the genus Homo: evidence from the Neandertal and modern lineages. Proc Natl Acad Sci U S A 100:15335–15340

    Article  Google Scholar 

  • Bruner E, Manzi G, Holloway R (2006) Krapina and Saccopastore: endocranial morphology in the pre-Wurmian Europeans. Period Biol 108:433–441

    Google Scholar 

  • Bruner E, Martin-Loeches M, Colom R (2010) Human midsagittal brain shape variation: patterns, allometry and integration. J Anat 216:589–599

    Article  Google Scholar 

  • Bruner E, De La Cuétara JM, Holloway R (2011) A bivariate approach to the variation of the parietal curvature in the genus Homo. Anat Rec 294:1548–1556

    Article  Google Scholar 

  • Bruner E, de la Cuétara JM, Colom R, Martin-Loeches M (2012) Gender-based differences in the shape of the human corpus callosum are associated with allometric variations. J Anat 220:417–421

    Article  Google Scholar 

  • Bruner E, De la Cuétara JM, Masters M, Amano H, Ogihara N (2014a) Functional craniology and brain evolution: from paleontology to biomedicine. Front Neuroanat 8:19

    Article  Google Scholar 

  • Bruner E, Rangel de Lázaro G, de la Cuétara JM, Martín-Loeches M, Colom R, Jacobs HIL (2014b) Midsagittal brain variation and MRI shape analysis of the precuneus in adult individuals. J Anat 224:367–376

    Article  Google Scholar 

  • Bruner E, Amano H, de la Cuétara JM, Ogihara N (2015a) The brain and the braincase: a spatial analysis on the midsagittal profile in adult humans. J Anat 227:268–276

    Article  Google Scholar 

  • Bruner E, Grimaud-Hervé D, Wu X, De la Cuétara JM, Holloway R (2015b) A paleoneurological survey of Homo erectus endocranial metrics. Quat Int 368:80–87

    Article  Google Scholar 

  • Bruner E, Pereira-Pedro AS, Bastir M (2017) Patterns of morphological integration between parietal and temporal areas in the human skull. J Morphol 278:1312–1320

    Article  Google Scholar 

  • Carter RMS, Anslow P (2009) Imaging of the calvarium. Semin Ultrasound CT MRI 30:465–491

    Article  Google Scholar 

  • Cheverud JM (1982) Relationships among ontogenetic, static, and evolutionary allometry. Am J Phys Anthropol 59:139–149

    Article  Google Scholar 

  • Collard M, Wood B (2000) How reliable are human phylogenetic hypotheses? Proc Natl Acad Sci U S A 97:5003–5006

    Article  Google Scholar 

  • Cotton F, Ramirez Rozzi FR, Vallee B, Pachai C, Hermier M, Guihard-Costa AM, Froment JC (2005) Cranial sutures and craniometric points detected on MRI. Surg Radiol Anat 27:64–70

    Article  Google Scholar 

  • Enlow DH (1990) Facial growth. Sounders, Philadelphia

    Google Scholar 

  • Erwin DH (2007) Disparity: morphological pattern and developmental context. Palaeontology 50:57–73

    Article  Google Scholar 

  • Esteve-Altava B, Rasskin-Gutman D (2014a) Beyond the functional matrix hypothesis: a network null model of human skull growth for the formation of bone articulations. J Anat 225:306–316

    Article  Google Scholar 

  • Esteve-Altava B, Rasskin-Gutman D (2014b) Theoretical morphology of tetrapod skull networks. C R Palevol 13:41–50

    Article  Google Scholar 

  • Esteve-Altava B, Marugán-Lobón J, Botella H, Bastir M, Rasskin-Gutman D (2013) Grist for Riedl’s Mill: a network model perspective on the integration and modularity of the human skull. J Exp Zool 320:489–500

    Article  Google Scholar 

  • Foote M (1992) Rarefaction analysis of morphological and taxonomic diversity. Paleobiology 18:1–16

    Article  Google Scholar 

  • Gómez-Robles A, Hopkins WD, Sherwood CC (2014) Modular structure facilitates mosaic evolution of the brain in chimpanzees and humans. Nat Commun 5:4439

    Article  Google Scholar 

  • Goriely A, Geers MGD, Holzapfel GA, Jayamohan J, Jérusalem A, Sivaloganathan S, Squier W, Van Dommelen JAW, Waters S, Kuhl E (2015) Mechanics of the brains: perspectives, challenges, and opportunities. Biomech Model Mechanobiol 14:931–965

    Article  Google Scholar 

  • Gould SJ (1966) Allometry and size in ontogeny and phylogeny. Biol Rev Camb Philos Soc 41:587–638

    Article  Google Scholar 

  • Gould SJ (1977) Ontogeny and phylogeny. Belknap Press, Harvard University Press, Cambridge, MA

    Google Scholar 

  • Gunz P (2015) Computed tools for paleoneurology. In: Bruner E (ed) Human paleoneurology. Springer, Cham, pp 39–55

    Google Scholar 

  • Gunz P, Harvati K (2007) The Neanderthal “chignon”: variation, integration, and homology. J Hum Evol 52:262–274

    Article  Google Scholar 

  • Gunz P, Mitterœcker P (2013) Semilandmarks: a method for quantifying curves and surfaces. Hystrix 24:103–109

    Google Scholar 

  • Hallgrimsson B, Lieberman DE, Liu W, Ford-Hutchinson AF, Jirik FR (2007) Epigenetic interactions and the structure of phenotypic variation in the cranium. Evol Dev 9:76–91

    Article  Google Scholar 

  • Hammer Ø, Ryan P, Harper D (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • Hetch E, Stout D (2015) Techniques for studying brain structure and function. In: Bruner E (ed) Human paleoneurology. Springer, Switzerland, pp 209–224

    Google Scholar 

  • Hilgetag CC, Barbas H (2005) Developmental mechanics of the primate cerebral cortex. Anat Embryol 210:411–417

    Article  Google Scholar 

  • Holliday TW (2003) Species concepts, reticulation, and human evolution. Curr Anthropol 44:653–673

    Article  Google Scholar 

  • Holloway RL (1981) Exploring the dorsal surface of hominoid brain endocasts by stereoplotter and discriminant analysis. Philos Trans R Soc Lond B 292:155–166

    Article  Google Scholar 

  • Holloway RL, Broadfield DC, Yuan MS (2004) Brain endocasts: the paleoneurological evidence. Wiley, Hoboken

    Google Scholar 

  • Jackson DA (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74:2204–2214

    Article  Google Scholar 

  • Jolliffe IT (2002) Principal component analysis. Springer, New York

    Google Scholar 

  • Klingenberg CP (2010) Evolution and development of shape: integrating quantitative approaches. Nat Rev Genet 11:623–635

    Google Scholar 

  • Klingenberg CP (2013) Cranial integration and modularity: insights into evolution and development from morphometric data. Hystrix 24:43–58

    Google Scholar 

  • Kobayashi Y, Matsui T, Haizuka Y, Hirai N, Matsumura G (2014a) Cerebral sulci and gyri observed on macaque endocasts. In: Akazawa T, Ogihara N, Tanabe HC, Terashima H (eds) Dynamics of learning in Neanderthals and modern humans, vol 2. Springer, Japan, pp 131–137

    Chapter  Google Scholar 

  • Kobayashi Y, Matsui T, Haizuka Y, Hirai N, Matsumura G (2014b) The coronal suture as an indicator of the caudal border of the macaque monkey prefrontal cortex. In: Akazawa T, Ogihara N, Tanabe HC, Terashima H (eds) Dynamics of learning in Neanderthals and modern humans, vol 2. Springer, Japan, pp 139–143

    Chapter  Google Scholar 

  • Lawing AM, Polly PD (2010) Geometric morphometrics: recent applications to the study of evolution and development. J Zool 280:1–7

    Article  Google Scholar 

  • Lieberman DE, Pearson OM, Mowbray KM (2000) Basicranial influence on overall cranial shape. J Hum Evol 38:291–315

    Article  Google Scholar 

  • Manzi G, Vienna A, Hauser G (1996) Developmental stress and cranial hypostosis by epigenetic trait occurrence and distribution: an exploratory study on the Italian Neandertals. J Hum Evol 30:511–527

    Article  Google Scholar 

  • Manzi G, Gracia A, Arsuaga JL (2000) Cranial discrete traits in the Middle Pleistocene humans from Sima de los Huesos (Sierra de Atapuerca, Spain). Does hypostosis represent any increase in “ontogenetic stress” along the Neanderthal lineage? J Hum Evol 38:425–446

    Article  Google Scholar 

  • Martin RD, Barbour AD (1989) Aspects of line-fitting in bivariate allometric analyses. Folia Primatol 53:65–81

    Article  Google Scholar 

  • Masters M (2012) Relative size of the eye and orbit: an evolutionary and craniofacial constraint model for examining the etiology and disparate incidence of juvenile-onset myopia in humans. Med Hypotheses 78:649–656

    Article  Google Scholar 

  • Masters M, Bruner E, Queer S et al (2015) Analysis of the volumetric relationship among human ocular, orbital and fronto-occipital cortical morphology. J Anat 227:460–473

    Article  Google Scholar 

  • McCollum MA, Sherwood CC, Vinyard CJ et al (2006) Of muscle-bound crania and human brain evolution: the story behind the MYH16 headlines. J Hum Evol 50:232–236

    Article  Google Scholar 

  • McGhee GR (2007) The geometry of evolution: adaptive landscapes and theoretical morphospaces. Cambridge University Press, Cambridge

    Google Scholar 

  • Mitteroecker P, Bookstein F (2011) Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics. Evol Biol 38:100–114

    Article  Google Scholar 

  • Mitteroecker P, Gunz P (2009) Advances in geometric morphometrics. Evol Biol 36:235–247

    Article  Google Scholar 

  • Moss ML, Young RW (1960) A functional approach to craniology. Am J Phys Anthropol 18:281–292

    Article  Google Scholar 

  • Neubauer S (2015) Human brain evolution: ontogeny and phylogeny. In: Bruner E (ed) Human paleoneurology. Springer, Cham, pp 95–120

    Google Scholar 

  • Neubauer S, Gunz P, Hublin J-J (2009) The pattern of endocranial ontogenetic shape changes in humans. J Anat 215:240–255

    Article  Google Scholar 

  • Neubauer S, Gunz P, Weber GW, Hublin JJ (2012) Endocranial volume of Australopithecus africanus: new CT-based estimates and the effects of missing data and small sample size. J Hum Evol 62:498–510

    Article  Google Scholar 

  • Olson EC, Miller RL (1958) Morphological integration. University Chicago Press, Chicago

    Google Scholar 

  • Pereira-Pedro S, Masters M, Bruner E (2017) Shape analysis of spatial relationships between orbitoocular and endocranial structures in modern humans and fossil hominids. J Anat. https://doi.org/10.1111/joa.12693

  • Plavcan JM, Cope DA (2001) Metric variation and species recognition in the fossil record. Evol Anthropol 10:204–222

    Article  Google Scholar 

  • Polly PD, Lawing AM, Fabre AC, Goswami A (2013) Phylogenetic principal components analysis and geometric morphometrics. Hystrix 24:33–41

    Google Scholar 

  • Ribas GC, Yasuda A, Ribas EC, Nishikuni K, Rodrigues AJ Jr (2006) Surgical anatomy of microneurosurgical sulcal key points. Neurosurgery 59:177–210

    Google Scholar 

  • Richtsmeier JT, Cheverud JM, Lele S (1992) Advances in anthropological morphometrics. Annu Rev Anthropol 21:283–305

    Article  Google Scholar 

  • Richtsmeier JT, DeLeon VB, Lele SR (2002) The promise of geometric morphometrics. Am J Phys Anthropol S35:63–91

    Article  Google Scholar 

  • Rightmire GP (1998) Evidence from facial morphology for similarity of Asian and African representatives of Homo erectus. Am J Phys Anthropol 106:61–85

    Article  Google Scholar 

  • Rightmire GP (2013) Homo erectus and Middle Pleistocene hominins: brain size, skull form, and species recognition. J Hum Evol 65:223–252

    Article  Google Scholar 

  • Rilling JK (2008) Neuroscientific approaches and applications within anthropology. Am J Phys Anthropol 137:2–32

    Article  Google Scholar 

  • Rohlf FJ (1999) Shape statistics: procrustes superimpositions and tangent spaces. J Classif 16:197–223

    Article  Google Scholar 

  • Rosas A, Peña-Melián A, García-Tabernero A, Bastir M, De La Rasilla M (2014) Temporal lobe sulcal pattern and the bony impressions in the middle cranial fossa: the case of the El Sidrón (Spain) Neandertal sample. Anat Rec 297:2331–2341

    Article  Google Scholar 

  • Roy K, Foote M (1997) Morphological approaches to measuring biodiversity. Trends Ecol Evol 12:277–281

    Article  Google Scholar 

  • Schluter D (1996) Adaptive radiation along genetic lines of least resistance. Evolution 50:1766–1774

    Article  Google Scholar 

  • Shea BT (1989) Heterochrony in human evolution: the case for neoteny reconsidered. Am J Phys Anthropol 32:69–101

    Article  Google Scholar 

  • Shea BT (1992) Developmental perspective on size change and allometry in evolution. Evol Anthropol 1:125–134

    Article  Google Scholar 

  • Simpson GG (1944) Tempo and mode in evolution. Columbia University Press, New York

    Google Scholar 

  • Slice DE (2007) Geometric morphometrics. Annu Rev Anthropol 36:261–281

    Article  Google Scholar 

  • Spoor F, Jeffrey N, Zonneveld F (2000) Using diagnostic radiology in human evolutionary studies. J Anat 197:61–76

    Article  Google Scholar 

  • Stedman HH, Kozyak BW, Nelson A, Thesier DM, Su LT, Low DW, Bridges CR, Shrager JB, Minugh-Purvis N, Mitchell MA (2004) Myosin gene mutation correlates with anatomical changes in the human lineage. Nature 428:415–418

    Article  Google Scholar 

  • Stringer C (2012) The status of Homo heidelbergensis (Schoetensack 1908). Evol Anthropol 21:101–107

    Article  Google Scholar 

  • Tallinen T, Chung JY, Rousseau F, Girard N, Lefèvre J, Mahadevan L (2016) On the growth and form of cortical convolutions. Nat Phys 12:588–593

    Article  Google Scholar 

  • Tattersall I (1986) Species recognition in human paleontology. J Hum Evol 15:165–175

    Article  Google Scholar 

  • Thompson D’A (1942) On growth and form. Cambridge University Press, Cambridge

    Google Scholar 

  • Toro R, Burnod Y (2005) A morphogenetic model for the development of cortical convolutions. Cereb Cortex 15:1900–1913

    Article  Google Scholar 

  • Wagner GP (1984) On the eigenvalue distribution of genetic and phenotypic dispersion matrices: evidence for a nonrandom organization of quantitative character variation. J Math Biol 21:77–95

    Article  Google Scholar 

  • Wagner GP, Altenberg L (1996) Complex adaptations and the evolution of evolvability. Evolution 50:967–976

    Article  Google Scholar 

  • Weber GW (2015) Virtual anthropology. Am J Phys Anthropol 156:22–42

    Article  Google Scholar 

  • Wills MA (2001) Morphological disparity: a primer. In: Adrain JM, Edgecombe GD, Lieberman BS (eds) Fossils, phylogeny, and form. Kluwer Academic, New York, pp 55–144

    Chapter  Google Scholar 

  • Wood B, Collard M (1999) The changing face of genus Homo. Evol Anthropol 8:195–207

    Article  Google Scholar 

  • Wu X, Bruner E (2016) The endocranial anatomy of Maba 1. Am J Phys Anthropol 160:633–643

    Article  Google Scholar 

  • Zelditch ML, Swidersky DL, Sheets HD, Fink WL (2004) Geometric morphometrics for biologists. Elsevier, San Diego

    Google Scholar 

  • Zollikofer CPE, Ponce de León MS (2005) Virtual reconstruction: a primer in computer-assisted paleontology and biomedicine. Wiley-Liss, New York

    Google Scholar 

Download references

Acknowledgments

This paper is funded by the Spanish Government (CGL2015-65387-C3-3-P). I am grateful to Naomichi Ogihara, Hideki Amano, Aida Gómez-Robles, David Costantini, David Polly, José Manuel de la Cuétara, Sofia Pereira-Pedro, Gizéh Rangel de Lázaro, Hana Píšová, Markus Bastir, Michael Masters, Sheela Athreya, Diego Rasskin-Gutman, Borja Esteve-Altava, and Simon Neubauer for their collaboration and suggestions on the topics presented in this manuscript. A special acknowledgment goes to Ralph Holloway, for providing his invaluable database, for his constant support, and for his friendship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emiliano Bruner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK

About this chapter

Cite this chapter

Bruner, E. (2018). The Brain, the Braincase, and the Morphospace. In: Bruner, E., Ogihara, N., Tanabe, H. (eds) Digital Endocasts. Replacement of Neanderthals by Modern Humans Series. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56582-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56582-6_7

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56580-2

  • Online ISBN: 978-4-431-56582-6

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics