Skip to main content

Advertisement

Log in

Intratumoral heterogeneity of Ki67 proliferation index outperforms conventional immunohistochemistry prognostic factors in estrogen receptor-positive HER2-negative breast cancer

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

In breast cancer (BC), pathologists visually score ER, PR, HER2, and Ki67 biomarkers to assess tumor properties and predict patient outcomes. This does not systematically account for intratumoral heterogeneity (ITH) which has been reported to provide prognostic value. This study utilized digital image analysis (DIA) and computational pathology methods to investigate the prognostic value of ITH indicators in ER-positive (ER+) HER2-negative (HER2−) BC patients. Whole slide images (WSIs) of surgically excised specimens stained for ER, PR, Ki67, and HER2 from 254 patients were used. DIA with tumor tissue segmentation and detection of biomarker-positive cells was performed. The DIA-generated data were subsampled by a hexagonal grid to compute Haralick’s texture indicators for ER, PR, and Ki67. Cox regression analyses were performed to assess the prognostic significance of the immunohistochemistry (IHC) and ITH indicators in the context of clinicopathologic variables. In multivariable analysis, the ITH of Ki67-positive cells, measured by Haralick’s texture entropy, emerged as an independent predictor of worse BC-specific survival (BCSS) (hazard ratio (HR) = 2.64, p-value = 0.0049), along with lymph node involvement (HR = 2.26, p-value = 0.0195). Remarkably, the entropy representing the spatial disarrangement of tumor proliferation outperformed the proliferation rate per se established either by pathology reports or DIA. We conclude that the Ki67 entropy indicator enables a more comprehensive risk assessment with regard to BCSS, especially in cases with borderline Ki67 proliferation rates. The study further demonstrates the benefits of high-capacity DIA-generated data for quantifying the essentially subvisual ITH properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The dataset analyzed during the current study is available from the corresponding author on reasonable request.

References

  1. Arzmi MH, Abdul Majeed A, Muazu Musa R, Mohd Razman MA, Gan HS, Mohd Khairuddin I, Nasir AF (2023) Epidemiology, detection and management of cancer: an overview. In: Deep Learning in Cancer Diagnostics: A Feature-based Transfer Learning Evaluation. Springer Nature Singapore, Singapore, pp 1–7

    Chapter  Google Scholar 

  2. Wilkinson L, Gathani T (2022) Understanding breast cancer as a global health concern. Br J Radiol 95:20211033. https://doi.org/10.1259/bjr.20211033

    Article  PubMed  Google Scholar 

  3. Greenwalt I, Zaza N, Das S, Li BD (2020) Precision medicine and targeted therapies in breast cancer. Surg Oncol Clin N Am 29:51–62. https://doi.org/10.1016/j.soc.2019.08.004

    Article  PubMed  Google Scholar 

  4. Allison KH, Hammond MEH, Dowsett M, McKernin SE, Carey LA, Fitzgibbons PL, Hayes DF, Lakhani SR, Chavez-MacGregor M, Perlmutter J, Perou CM, Regan MM, Rimm DL, Symmans WF, Torlakovic EE, Varella L, Viale G, Weisberg TF, McShane LM, Wolff AC (2020) Estrogen and progesterone receptor testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists guideline update. Arch Pathol Lab Med 144:545–563. https://doi.org/10.5858/arpa.2019-0904-SA

    Article  CAS  PubMed  Google Scholar 

  5. Wolff AC, Somerfield MR, Dowsett M, Hammond MEH, Hayes DF, McShane LM, Saphner TJ, Spears PA, Allison KH (2023) Human epidermal growth factor receptor 2 testing in breast cancer: ASCO–College of American Pathologists guideline update. J Clin Oncol 41:3867–3872. https://doi.org/10.1200/JCO.22.02864

    Article  CAS  PubMed  Google Scholar 

  6. Andre F, Ismaila N, Allison KH, Barlow WE, Collyar DE, Damodaran S, Henry NL, Jhaveri K, Kalinsky K, Kuderer NM, Litvak A, Mayer EL, Pusztai L, Raab R, Wolff AC, Stearns V (2022) Biomarkers for adjuvant endocrine and chemotherapy in early-stage breast cancer: ASCO guideline update. J Clin Oncol 40:1816–1837. https://doi.org/10.1200/jco.22.00069

    Article  CAS  PubMed  Google Scholar 

  7. Untch M, Harbeck N, Huober J, von Minckwitz G, Gerber B, Kreipe HH, Liedtke C, Marschner N, Möbus V, Scheithauer H, Schneeweiss A, Thomssen C, Jackisch C, Beckmann MW, Blohmer JU, Costa SD, Decker T, Diel I, Fasching PA et al (2015) Primary therapy of patients with early breast cancer: evidence, controversies, consensus: Opinions of German Specialists to the 14th St. Gallen International Breast Cancer Conference 2015 (Vienna 2015). Geburtshilfe Frauenheilkd 75:556–565. https://doi.org/10.1055/s-0035-1546120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Untch M, Gerber B, Harbeck N, Jackisch C, Marschner N, Möbus V, von Minckwitz G, Loibl S, Beckmann MW, Blohmer JU, Costa SD, Decker T, Diel I, Dimpfl T, Eiermann W, Fehm T, Friese K, Jänicke F, Janni W et al (2013) 13th st. Gallen international breast cancer conference 2013: primary therapy of early breast cancer evidence, controversies, consensus - opinion of a german team of experts (zurich 2013). Breast Care (Basel) 8:221–229. https://doi.org/10.1159/000351692

    Article  PubMed  Google Scholar 

  9. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B, Senn HJ (2011) Strategies for subtypes--dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22:1736–1747. https://doi.org/10.1093/annonc/mdr304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goldhirsch A, Winer EP, Coates A, Gelber R, Piccart-Gebhart M, Thürlimann B, Senn H-J, Albain KS, André F, Bergh J (2013) Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol 24:2206–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gerdes J, Li L, Schlueter C, Duchrow M, Wohlenberg C, Gerlach C, Stahmer I, Kloth S, Brandt E, Flad HD (1991) Immunobiochemical and molecular biologic characterization of the cell proliferation-associated nuclear antigen that is defined by monoclonal antibody Ki-67. Am J Pathol 138:867–873

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bustreo S, Osella-Abate S, Cassoni P, Donadio M, Airoldi M, Pedani F, Papotti M, Sapino A, Castellano I (2016) Optimal Ki67 cut-off for luminal breast cancer prognostic evaluation: a large case series study with a long-term follow-up. Breast Cancer Res Treat 157:363–371. https://doi.org/10.1007/s10549-016-3817-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Najjar S, Allison KH (2022) Updates on breast biomarkers. Virchows Archiv 480:163–176

    Article  CAS  PubMed  Google Scholar 

  14. Duffy MJ, Harbeck N, Nap M, Molina R, Nicolini A, Senkus E, Cardoso F (2017) Clinical use of biomarkers in breast cancer: updated guidelines from the European Group on Tumor Markers (EGTM). Eur J Cancer 75:284–298. https://doi.org/10.1016/j.ejca.2017.01.017

    Article  CAS  PubMed  Google Scholar 

  15. Varga Z, Diebold J, Dommann-Scherrer C, Frick H, Kaup D, Noske A, Obermann E, Ohlschlegel C, Padberg B, Rakozy C, Sancho Oliver S, Schobinger-Clement S, Schreiber-Facklam H, Singer G, Tapia C, Wagner U, Mastropasqua MG, Viale G, Lehr HA (2012) How reliable is Ki-67 immunohistochemistry in grade 2 breast carcinomas? A QA study of the Swiss Working Group of Breast- and Gynecopathologists. PLoS One 7:e37379. https://doi.org/10.1371/journal.pone.0037379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Polley MYC, Leung SCY, McShane LM, Gao D, Hugh JC, Mastropasqua MG, Viale G, Zabaglo LA, Penault-Llorca F, Bartlett JMS, Gown AM, Symmans WF, Piper T, Mehl E, Enos RA, Hayes DF, Dowsett M, Nielsen TO, Group tIKiBCWGotBI, Group NABC (2013) An International Ki67 Reproducibility Study. JNCI: J Nat Cancer Inst 105:1897–1906. https://doi.org/10.1093/jnci/djt306

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gudlaugsson E, Skaland I, Janssen EAM, Smaaland R, Shao Z, Malpica A, Voorhorst F, Baak JPA (2012) Comparison of the effect of different techniques for measurement of Ki67 proliferation on reproducibility and prognosis prediction accuracy in breast cancer. Histopathology 61:1134–1144. https://doi.org/10.1111/j.1365-2559.2012.04329.x

    Article  PubMed  Google Scholar 

  18. Mikami Y, Ueno T, Yoshimura K, Tsuda H, Kurosumi M, Masuda S, Horii R, Toi M, Sasano H (2013) Interobserver concordance of Ki67 labeling index in breast cancer: Japan Breast Cancer Research Group Ki67 ring study. Cancer Sci 104:1539–1543. https://doi.org/10.1111/cas.12245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Coates AS, Winer EP, Goldhirsch A, Gelber RD, Gnant M, Piccart-Gebhart M, Thürlimann B, Senn HJ, André F, Baselga J, Bergh J, Bonnefoi H, Burstein H, Cardoso F, Castiglione-Gertsch M, Coates AS, Colleoni M, Curigliano G, Davidson NE et al (2015) Tailoring therapies—improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. Ann Oncol 26:1533–1546. https://doi.org/10.1093/annonc/mdv221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nielsen TO, Leung SCY, Rimm DL, Dodson A, Acs B, Badve S, Denkert C, Ellis MJ, Fineberg S, Flowers M, Kreipe HH, Laenkholm A-V, Pan H, Penault-Llorca FM, Polley M-Y, Salgado R, Smith IE, Sugie T, Bartlett JMS et al (2020) Assessment of Ki67 in breast cancer: updated recommendations from the International Ki67 in Breast Cancer Working Group. JNCI: J Nat Cancer Inst 113:808–819. https://doi.org/10.1093/jnci/djaa201

    Article  CAS  PubMed Central  Google Scholar 

  21. FDA expands early breast cancer indication for abemaciclib with endocrine therapy. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-expands-early-breast-cancer-indication-abemaciclib-endocrine-therapy. Accessed 2023-11-21

  22. European Society for Medical Oncology (ESMO). https://www.esmo.org/. Accessed 2023-11-21

  23. Guidelines NICE (2023) Early and locally advanced breast cancer: diagnosis and management. National Institute for Health and Care Excellence (NICE), London

    Google Scholar 

  24. Turner BM, Katerji H, Zhang H, Hicks DG (2021) Biomarker and multigene assay testing in ER positive, HER-2 negative breast carcinomas: an international guidelines-based approach. Human Pathol Rep 26:300574. https://doi.org/10.1016/j.hpr.2021.300574

    Article  Google Scholar 

  25. Clark BZ, Onisko A, Assylbekova B, Li X, Bhargava R, Dabbs DJ (2019) Breast cancer global tumor biomarkers: a quality assurance study of intratumoral heterogeneity. Modern Pathol 32:354–366. https://doi.org/10.1038/s41379-018-0153-0

    Article  Google Scholar 

  26. Fumagalli C, Barberis M (2021) Breast cancer heterogeneity. Diagnostics 11:1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kuncman W, Orzechowska M, Kuncman Ł, Kordek R, Taran K (2021) Intertumoral heterogeneity of primary breast tumors and synchronous axillary lymph node metastases reflected in IHC-assessed expression of routine and nonstandard biomarkers. Front Oncol 11. https://doi.org/10.3389/fonc.2021.660318

  28. Januškevičienė I, Petrikaitė V (2019) Heterogeneity of breast cancer: the importance of interaction between different tumor cell populations. Life Sci 239:117009. https://doi.org/10.1016/j.lfs.2019.117009

    Article  CAS  PubMed  Google Scholar 

  29. Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, Varela I, Phillimore B, Begum S, McDonald NQ, Butler A, Jones D, Raine K, Latimer C et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. New Engl J Med 366:883–892. https://doi.org/10.1056/NEJMoa1113205

    Article  CAS  PubMed  Google Scholar 

  30. O'Brien KM, Cole SR, Tse CK, Perou CM, Carey LA, Foulkes WD, Dressler LG, Geradts J, Millikan RC (2010) Intrinsic breast tumor subtypes, race, and long-term survival in the Carolina Breast Cancer Study. Clin Cancer Res 16:6100–6110. https://doi.org/10.1158/1078-0432.Ccr-10-1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aleskandarany MA, Green AR, Ashankyty I, Elmouna A, Diez-Rodriguez M, Nolan CC, Ellis IO, Rakha EA (2016) Impact of intratumoural heterogeneity on the assessment of Ki67 expression in breast cancer. Breast Cancer Res Treat 158:287–295. https://doi.org/10.1007/s10549-016-3893-x

    Article  CAS  PubMed  Google Scholar 

  32. Shui R, Yu B, Bi R, Yang F, Yang W (2015) An interobserver reproducibility analysis of Ki67 visual assessment in breast cancer. PLoS One 10:e0125131. https://doi.org/10.1371/journal.pone.0125131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dowsett M, Nielsen TO, A'Hern R, Bartlett J, Coombes RC, Cuzick J, Ellis M, Henry NL, Hugh JC, Lively T, McShane L, Paik S, Penault-Llorca F, Prudkin L, Regan M, Salter J, Sotiriou C, Smith IE, Viale G et al (2011) Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer working group. J Natl Cancer Inst 103:1656–1664. https://doi.org/10.1093/jnci/djr393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gluz O, Nitz UA, Christgen M, Kates RE, Shak S, Clemens M, Kraemer S, Aktas B, Kuemmel S, Reimer T, Kusche M, Heyl V, Lorenz-Salehi F, Just M, Hofmann D, Degenhardt T, Liedtke C, Svedman C, Wuerstlein R et al (2016) West German Study Group Phase III PlanB Trial: first prospective outcome data for the 21-gene recurrence score assay and concordance of prognostic markers by central and local pathology assessment. J Clin Oncol 34:2341–2349. https://doi.org/10.1200/jco.2015.63.5383

    Article  PubMed  Google Scholar 

  35. Amir E, Miller N, Geddie W, Freedman O, Kassam F, Simmons C, Oldfield M, Dranitsaris G, Tomlinson G, Laupacis A (2012) Prospective study evaluating the impact of tissue confirmation of metastatic disease in patients with breast cancer. J Clin Oncol 30:587

    Article  PubMed  Google Scholar 

  36. Gong Y, Han EY, Guo M, Pusztai L, Sneige N (2011) Stability of estrogen receptor status in breast carcinoma: a comparison between primary and metastatic tumors with regard to disease course and intervening systemic therapy. Cancer 117:705–713

    Article  PubMed  Google Scholar 

  37. Thompson AM, Jordan LB, Quinlan P, Anderson E, Skene A, Dewar JA, Purdie CA, the Breast Recurrence in Tissues Study G (2010) Prospective comparison of switches in biomarker status between primary and recurrent breast cancer: the Breast Recurrence In Tissues Study (BRITS). Breast Cancer Res 12:R92. https://doi.org/10.1186/bcr2771

    Article  PubMed  PubMed Central  Google Scholar 

  38. Xu M, Yuan Y, Yan P, Jiang J, Ma P, Niu X, Ma S, Cai H, Yang K (2020) Prognostic significance of androgen receptor expression in triple negative breast cancer: a systematic review and meta-analysis. Clin Breast Cancer 20:e385–e396. https://doi.org/10.1016/j.clbc.2020.01.002

    Article  CAS  PubMed  Google Scholar 

  39. Lindström LS, Yau C, Czene K, Thompson CK, Hoadley KA, Van't Veer LJ, Balassanian R, Bishop JW, Carpenter PM, Chen YY, Datnow B, Hasteh F, Krings G, Lin F, Zhang Y, Nordenskjöld B, Stål O, Benz CC, Fornander T et al (2018) Intratumor heterogeneity of the estrogen receptor and the long-term risk of fatal breast cancer. J Natl Cancer Inst 110:726–733. https://doi.org/10.1093/jnci/djx270

    Article  PubMed  PubMed Central  Google Scholar 

  40. Patkulkar PA, Subbalakshmi AR, Jolly MK, Sinharay S (2023) Mapping spatiotemporal heterogeneity in tumor profiles by integrating high-throughput imaging and omics analysis. ACS Omega 8:6126–6138. https://doi.org/10.1021/acsomega.2c06659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen T, Cao C, Zhang J, Streets A, Li T, Huang Y (2022) Histologically resolved multiomics enables precise molecular profiling of human intratumor heterogeneity. PLoS Biol 20:e3001699. https://doi.org/10.1371/journal.pbio.3001699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. del Rosario Taco Sanchez M, Soler-Monsó T, Petit A, Azcarate J, Lasheras A, Artal C, Gil M, Falo C, Pla MJ, Matias-Guiu X (2019) Digital quantification of KI-67 in breast cancer. Virchows Archiv 474:169–176. https://doi.org/10.1007/s00428-018-2481-3

    Article  CAS  PubMed  Google Scholar 

  43. Sode M, Thagaard J, Eriksen JO, Laenkholm A-V (2023) Digital image analysis and assisted reading of the HER2 score display reduced concordance: pitfalls in the categorisation of HER2-low breast cancer. Histopathology 82:912–924. https://doi.org/10.1111/his.14877

    Article  PubMed  Google Scholar 

  44. Hartage R, Li AC, Hammond S, Parwani AV (2020) A validation study of human epidermal growth factor receptor 2 immunohistochemistry digital imaging analysis and its correlation with human epidermal growth factor receptor 2 fluorescence in situ hybridization results in breast carcinoma. J Pathol Inform 11:2. https://doi.org/10.4103/jpi.jpi_52_19

    Article  PubMed  PubMed Central  Google Scholar 

  45. Stålhammar G, Fuentes Martinez N, Lippert M, Tobin NP, Mølholm I, Kis L, Rosin G, Rantalainen M, Pedersen L, Bergh J (2016) Digital image analysis outperforms manual biomarker assessment in breast cancer. Modern Pathol 29:318–329

    Article  Google Scholar 

  46. Laurinavicius A, Plancoulaine B, Laurinaviciene A, Herlin P, Meskauskas R, Baltrusaityte I, Besusparis J, Dasevicius D, Elie N, Iqbal Y (2014) A methodology to ensure and improve accuracy of Ki67 labelling index estimation by automated digital image analysis in breast cancer tissue. Breast Cancer Res 16:1–13

    Article  Google Scholar 

  47. Ács B, Madaras L, Kovács KA, Micsik T, Tőkés A-M, Győrffy B, Kulka J, Szász AM (2018) Reproducibility and prognostic potential of Ki-67 proliferation index when comparing digital-image analysis with standard semi-quantitative evaluation in breast cancer. Pathol Oncol Res 24:115–127

    Article  PubMed  Google Scholar 

  48. Stålhammar G, Robertson S, Wedlund L, Lippert M, Rantalainen M, Bergh J, Hartman J (2018) Digital image analysis of Ki67 in hot spots is superior to both manual Ki67 and mitotic counts in breast cancer. Histopathology 72:974–989

    Article  PubMed  Google Scholar 

  49. Besusparis J, Plancoulaine B, Rasmusson A, Augulis R, Green AR, Ellis IO, Laurinaviciene A, Herlin P, Laurinavicius A (2016) Impact of tissue sampling on accuracy of Ki67 immunohistochemistry evaluation in breast cancer. Diag Pathol 11:82. https://doi.org/10.1186/s13000-016-0525-z

    Article  CAS  Google Scholar 

  50. Zilenaite D, Rasmusson A, Augulis R, Besusparis J, Laurinaviciene A, Plancoulaine B, Ostapenko V, Laurinavicius A (2020) Independent prognostic value of intratumoral heterogeneity and immune response features by automated digital immunohistochemistry analysis in early hormone receptor-positive breast carcinoma. Front Oncol 10:950. https://doi.org/10.3389/fonc.2020.00950

    Article  PubMed  PubMed Central  Google Scholar 

  51. Plancoulaine B, Laurinaviciene A, Herlin P, Besusparis J, Meskauskas R, Baltrusaityte I, Iqbal Y, Laurinavicius A (2015) A methodology for comprehensive breast cancer Ki67 labeling index with intra-tumor heterogeneity appraisal based on hexagonal tiling of digital image analysis data. Virchows Archiv 467:711–722

    Article  CAS  Google Scholar 

  52. Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, Meyer L, Gress DM, Byrd DR, Winchester DP (2017) The Eighth Edition AJCC Cancer Staging Manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J Clin 67:93–99. https://doi.org/10.3322/caac.21388

    Article  PubMed  Google Scholar 

  53. Cardoso F, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rubio IT, Zackrisson S, Senkus E (2019) Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann Oncol 30:1194–1220. https://doi.org/10.1093/annonc/mdz173

    Article  CAS  PubMed  Google Scholar 

  54. Radziuviene G, Rasmusson A, Augulis R, Grineviciute RB, Zilenaite D, Laurinaviciene A, Ostapenko V, Laurinavicius A (2021) Intratumoral heterogeneity and immune response indicators to predict overall survival in a retrospective study of HER2-borderline (IHC 2+) breast cancer patients. Front Oncol 11:774088. https://doi.org/10.3389/fonc.2021.774088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Laurinavicius A, Plancoulaine B, Rasmusson A, Besusparis J, Augulis R, Meskauskas R, Herlin P, Laurinaviciene A, Abdelhadi Muftah AA, Miligy I (2016) Bimodality of intratumor Ki67 expression is an independent prognostic factor of overall survival in patients with invasive breast carcinoma. Virchows Archiv 468:493–502

    Article  CAS  PubMed  Google Scholar 

  56. Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image classification. IEEE Trans Syst Man and Cybernetics SMC-3(6):610–621. https://doi.org/10.1109/TSMC.1973.4309314

  57. Budczies J, Klauschen F, Sinn BV, Gyorffy B, Schmitt WD, Darb-Esfahani S, Denkert C (2012) Cutoff Finder: a comprehensive and straightforward Web application enabling rapid biomarker cutoff optimization. PLoS One 7:e51862. https://doi.org/10.1371/journal.pone.0051862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ilan Y (2022) The constrained disorder principle defines living organisms and provides a method for correcting disturbed biological systems. Comput Struct Biotechnol J 20:6087–6096. https://doi.org/10.1016/j.csbj.2022.11.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Andor N, Graham TA, Jansen M, Xia LC, Aktipis CA, Petritsch C, Ji HP, Maley CC (2016) Pan-cancer analysis of the extent and consequences of intratumor heterogeneity. Nat Med 22:105–113

    Article  CAS  PubMed  Google Scholar 

  60. Aeffner F, Zarella MD, Buchbinder N, Bui MM, Goodman MR, Hartman DJ, Lujan GM, Molani MA, Parwani AV, Lillard K, Turner OC, Vemuri VNP, Yuil-Valdes AG, Bowman D (2019) Introduction to digital image analysis in whole-slide imaging: a white paper from the digital pathology association. J Pathol Inform 10:9. https://doi.org/10.4103/jpi.jpi_82_18

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bui MM, Asa SL, Pantanowitz L, Parwani A, van der Laak J, Ung C, Balis U, Isaacs M, Glassy E, Manning L (2019) Digital and computational pathology: bring the future into focus. J Pathol Inform 10:10. https://doi.org/10.4103/2153-3539.255259

Download references

Funding

This project has received funding from the Research Council of Lithuania (LMTLT), agreement No S-PD-22-86.

Author information

Authors and Affiliations

Authors

Contributions

D.Z.P., A.R., J.B., R.B.V., R.A., Ai.L., B.P., L.P., and A.L. participated in the conception and design of the study. D.Z.P. and Ai.L. participated in tumor sample collection and IHC staining. D.Z.P., J.B., and R.B.V. carried out the digital analysis. D.Z.P. performed statistical analyses. D.Z.P., in collaboration with A.R., A.L., and L.P., participated in the interpretation of the results and drafted essential parts of the manuscript. All authors critically revised and approved the final version of the manuscript.

Corresponding author

Correspondence to Dovile Zilenaite-Petrulaitiene.

Ethics declarations

Ethics approval and consent to participate

The study was approved by the Lithuanian Bioethics Committee (reference number: 40, updated on 2023-01-10 (Nr. 6B-23-8)). The patient’s consent to participate in the study was obtained before study entry.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 3479 kb)

ESM 2

(DOCX 365 kb)

ESM 3

(DOCX 336 kb)

ESM 4

(PDF 1914 kb)

ESM 5

(DOCX 18 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zilenaite-Petrulaitiene, D., Rasmusson, A., Besusparis, J. et al. Intratumoral heterogeneity of Ki67 proliferation index outperforms conventional immunohistochemistry prognostic factors in estrogen receptor-positive HER2-negative breast cancer. Virchows Arch (2024). https://doi.org/10.1007/s00428-024-03737-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00428-024-03737-4

Keywords

Navigation