Skip to main content

Advertisement

Log in

A methodology for comprehensive breast cancer Ki67 labeling index with intra-tumor heterogeneity appraisal based on hexagonal tiling of digital image analysis data

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Digital image analysis (DIA) enables higher accuracy, reproducibility, and capacity to enumerate cell populations by immunohistochemistry; however, the most unique benefits may be obtained by evaluating the spatial distribution and intra-tissue variance of markers. The proliferative activity of breast cancer tissue, estimated by the Ki67 labeling index (Ki67 LI), is a prognostic and predictive biomarker requiring robust measurement methodologies. We performed DIA on whole-slide images (WSI) of 302 surgically removed Ki67-stained breast cancer specimens; the tumour classifier algorithm was used to automatically detect tumour tissue but was not trained to distinguish between invasive and non-invasive carcinoma cells. The WSI DIA-generated data were subsampled by hexagonal tiling (HexT). Distribution and texture parameters were compared to conventional WSI DIA and pathology report data. Factor analysis of the data set, including total numbers of tumor cells, the Ki67 LI and Ki67 distribution, and texture indicators, extracted 4 factors, identified as entropy, proliferation, bimodality, and cellularity. The factor scores were further utilized in cluster analysis, outlining subcategories of heterogeneous tumors with predominant entropy, bimodality, or both at different levels of proliferative activity. The methodology also allowed the visualization of Ki67 LI heterogeneity in tumors and the automated detection and quantitative evaluation of Ki67 hotspots, based on the upper quintile of the HexT data, conceptualized as the “Pareto hotspot”. We conclude that systematic subsampling of DIA-generated data into HexT enables comprehensive Ki67 LI analysis that reflects aspects of intra-tumor heterogeneity and may serve as a methodology to improve digital immunohistochemistry in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brennan DJ, Gallagher WM (2008) Prognostic ability of a panel of immunohistochemistry markers—retailoring of an ‘old solution’. Breast Cancer Res 10:102

    Article  PubMed Central  PubMed  Google Scholar 

  2. Carvajal-Hausdorf DE, Schalper KA, Neumeister VM, Rimm DL (2015) Quantitative measurement of cancer tissue biomarkers in the lab and in the clinic. Lab Investig 95:385–396. doi:10.1038/labinvest.2014.157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Dowsett M, Nielsen TO, A’Hern R, Bartlett J, Coombes RC, Cuzick J, Ellis M, Henry NL, Hugh JC, Lively T, McShane L, Paik S, Penault-Llorca F, Prudkin L, Regan M, Salter J, Sotiriou C, Smith IE, Viale G, Zujewski JA, Hayes DF, International Ki-67 in Breast Cancer Working G (2011) Assessment of Ki67 in breast cancer: recommendations from the international Ki67 in breast cancer working group. J Natl Cancer Inst 103:1656–1664. doi:10.1093/jnci/djr393

    Article  Google Scholar 

  4. Gudlaugsson E, Skaland I, Janssen EA, Smaaland R, Shao Z, Malpica A, Voorhorst F, Baak JP (2012) Comparison of the effect of different techniques for measurement of Ki67 proliferation on reproducibility and prognosis prediction accuracy in breast cancer. Histopathology 61:1134–1144. doi:10.1111/j.1365-2559.2012.04329.x

    Article  PubMed  Google Scholar 

  5. Laurinavicius A, Plancoulaine B, Laurinaviciene A, Herlin P, Meskauskas R, Baltrusaityte I, Besusparis J, Dasevicius D, Elie N, Iqbal Y, Bor C, Ellis IO (2014) A methodology to ensure and improve accuracy of Ki67 labelling index estimation by automated digital image analysis in breast cancer tissue. Breast Cancer Res 16:R35. doi:10.1186/bcr3639

    Article  PubMed Central  PubMed  Google Scholar 

  6. Tadrous PJ (2010) On the concept of objectivity in digital image analysis in pathology. Pathology 42:207–211

    Article  PubMed  Google Scholar 

  7. Riber-Hansen R, Vainer B, Steiniche T (2012) Digital image analysis: a review of reproducibility, stability and basic requirements for optimal results. Apmis 120:276–289. doi:10.1111/j.1600-0463.2011.02854.x

    Article  PubMed  Google Scholar 

  8. Laurinavicius A, Laurinaviciene A, Dasevicius D, Elie N, Plancoulaine B, Bor C, Herlin P (2012) Digital image analysis in pathology: benefits and obligation. Anal Cell Pathol (Amst) 35:75–78. doi:10.3233/ACP-2011-0033

    Article  Google Scholar 

  9. Rimm DL (2014) Next-gen immunohistochemistry. Nat Methods 11:381–383. doi:10.1038/nmeth.2896

    Article  CAS  PubMed  Google Scholar 

  10. Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thurlimann B, Senn HJ (2013) Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the primary therapy of early breast cancer 2013. Ann Oncol 24:2206–2223. doi:10.1093/annonc/mdt303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Haroske G, Dimmer V, Steindorf D, Schilling U, Theissig F, Kunze KD (1996) Cellular sociology of proliferating tumor cells in invasive ductal breast cancer. Anal Quant Cytol Histol 18:191–198

    CAS  PubMed  Google Scholar 

  12. Potts SJ, Krueger JS, Landis ND, Eberhard DA, Young GD, Schmechel SC, Lange H (2012) Evaluating tumor heterogeneity in immunohistochemistry-stained breast cancer tissue. Lab Investig 92:1342–1357. doi:10.1038/labinvest.2012.91

    Article  PubMed  Google Scholar 

  13. Lu H, Papathomas TG, van Zessen D, Palli I, de Krijger RR, van der Spek PJ, Dinjens W, Stubbs AP (2014) Automated selection of hotspots (ASH): enhanced automated segmentation and adaptive step finding for Ki67 hotspot detection in adrenal cortical cancer. Diagn Pathol 9:216. doi:10.1186/s13000-014-0216-6

    Article  PubMed Central  PubMed  Google Scholar 

  14. Romero Q, Bendahl PO, Ferno M, Grabau D, Borgquist S (2014) A novel model for Ki67 assessment in breast cancer. Diagn Pathol 9:118. doi:10.1186/1746-1596-9-118

    Article  PubMed Central  PubMed  Google Scholar 

  15. Nassar A, Radhakrishnan A, Cabrero IA, Cotsonis GA, Cohen C (2010) Intratumoral heterogeneity of immunohistochemical marker expression in breast carcinoma: a tissue microarray-based study. Appl Immunohistochem Mol Morphol 18:433–441

    CAS  PubMed  Google Scholar 

  16. Faratian D, Christiansen J, Gustavson M, Jones C, Scott C, Um I, Harrison DJ (2011) Heterogeneity mapping of protein expression in tumors using quantitative immunofluorescence. J Vis Exp:e3334. doi:10.3791/3334

  17. Heindl A, Nawaz S, Yuan Y (2015) Mapping spatial heterogeneity in the tumor microenvironment: a new era for digital pathology. Lab Investig. doi:10.1038/labinvest.2014.155

    PubMed  Google Scholar 

  18. Birch CPD, Oom SP, Beecham JA (2007) Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecol Model 206:347–359. doi:10.1016/j.ecolmodel.2007.03.041

    Article  Google Scholar 

  19. Nelson TA (2012) Trends in spatial statistics. Prof Geogr 64:83–94. doi:10.1080/00330124.2011.578540

    Article  Google Scholar 

  20. Her I (1995) Geometric transformations on the hexagonal grid. IEEE Trans Image Process 4:1213–1222. doi:10.1109/83.413166

    Article  CAS  PubMed  Google Scholar 

  21. Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. I The Value of Histological Grade in Breast Cancer: Experience from a Large Study with Long-Term Follow-up Histopathology 19:403–410

    CAS  PubMed  Google Scholar 

  22. Olea RA (1984) Sampling design optimization for spatial functions. Math Geol 16:369–392

    Article  Google Scholar 

  23. Li WW, Goodchild MF, Church R (2013) An efficient measure of compactness for two-dimensional shapes and its application in regionalization problems. Int J Geogr Inf Sci 27:1227–1250. doi:10.1080/13658816.2012.752093

    Article  Google Scholar 

  24. Haralick RM, Shanmugan K, Distein I (1973) Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics SMC-3:610–621

    Article  Google Scholar 

  25. Walker RF, Jackway PT, Longstaff ID (1997) Recent developments in the use of the co-occurrence matrix for texture recognition Dsp 97: 1997 13th International Conference on Digital Signal Processing Proceedings, Vols 1 and 2:63–65

  26. Walker R, Jackway P, Longstaff ID (1995) Improving co-occurence matrix feature discrimination proceedings of DICTA’95. In: The 3rd conference on digital image computing: techniques and applications, pp. 643–648

    Google Scholar 

  27. Xuan GR, Zhang W, Chai PQ (2001) EM algorithms of Gaussian mixture model and hidden Markov model. IEEE Image Proc: 145-148

  28. Dempster A, Land NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc 39:1–38

    Google Scholar 

  29. Laurinavicius A, Laurinaviciene A, Ostapenko V, Dasevicius D, Jarmalaite S, Lazutka J (2012) Immunohistochemistry profiles of breast ductal carcinoma: factor analysis of digital image analysis data. Diagn Pathol 7:27. doi:10.1186/1746-1596-7-27

    Article  PubMed Central  PubMed  Google Scholar 

  30. Dodd LG, Kerns BJ, Dodge RK, Layfield LJ (1997) Intratumoral heterogeneity in primary breast carcinoma: study of concurrent parameters. J Surg Oncol 64:280–287 discussion 287-288

    Article  CAS  PubMed  Google Scholar 

  31. Hipp J, Cheng J, Pantanowitz L, Hewitt S, Yagi Y, Monaco J, Madabhushi A, Rodriguez-Canales J, Hanson J, Roy-Chowdhuri S, Filie AC, Feldman MD, Tomaszewski JE, Shih NN, Brodsky V, Giaccone G, Emmert-Buck MR, Balis UJ (2011) Image microarrays (IMA): digital pathology’s missing tool. J Pathol Inform 2:47. doi:10.4103/2153-3539.86829

    Article  PubMed Central  PubMed  Google Scholar 

  32. Brown JR, DiGiovanna MP, Killelea B, Lannin DR, Rimm DL (2014) Quantitative assessment Ki-67 score for prediction of response to neoadjuvant chemotherapy in breast cancer. Lab Investig 94:98–106. doi:10.1038/labinvest.2013.128

    Article  CAS  PubMed  Google Scholar 

  33. Christgen M, von Ahsen S, Christgen H, Länger F, Kreipe H (2015) The region of interest (ROI) size impacts on Ki67 quantification by computer-assisted image analysis in breast cancer. Human Pathology

Download references

Acknowledgments

This research is funded by the European Social Fund under the Global Grant measure, Grant #VP1-3.1-SMM-07-K-03-051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvydas Laurinavicius.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Online Resource 1

(PDF 501 kb)

Online Resource 2

(PDF 354 kb)

Online Resource 3

(PDF 332 kb)

Online Resource 4

(PDF 313 kb)

Online Resource 5

(PDF 422 kb)

Online Resource 6

(PDF 141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plancoulaine, B., Laurinaviciene, A., Herlin, P. et al. A methodology for comprehensive breast cancer Ki67 labeling index with intra-tumor heterogeneity appraisal based on hexagonal tiling of digital image analysis data. Virchows Arch 467, 711–722 (2015). https://doi.org/10.1007/s00428-015-1865-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-015-1865-x

Keywords

Navigation