Skip to main content

Advertisement

Log in

Common and discrete mechanisms underlying chronic pain and itch: peripheral and central sensitization

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Normally, an obvious antagonism exists between pain and itch. In normal conditions, painful stimuli suppress itch sensation, whereas pain killers often generate itch. Although pain and itch are mediated by separate pathways under normal conditions, most chemicals are not highly specific to one sensation in chronic pathologic conditions. Notably, in patients with neuropathic pain, histamine primarily induces pain rather than itch, while in patients with atopic dermatitis, bradykinin triggers itch rather than pain. Accordingly, repetitive scratching even enhances itch sensation in chronic itch conditions. Physicians often prescribe pain relievers to patients with chronic itch, suggesting common mechanisms underlying chronic pain and itch, especially peripheral and central sensitization. Rather than separating itch and pain, studies should investigate chronic itch and pain including neuropathic and inflammatory conditions. Here, we reviewed chronic sensitization leading to chronic pain and itch at both peripheral and central levels. Studies investigating the connection between pain and itch facilitate the development of new therapeutics against both chronic dysesthesias based on the underlying pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References 

  1. Abadia Molina F et al (1992) Increased sensory neuropeptides in nodular prurigo: a quantitative immunohistochemical analysis. Br J Dermatol 127(4):344–351

    Article  CAS  PubMed  Google Scholar 

  2. Akaishi S, Ogawa R, Hyakusoku H (2008) Keloid and hypertrophic scar: neurogenic inflammation hypotheses. Med Hypotheses 71(1):32–38

    Article  CAS  PubMed  Google Scholar 

  3. Akiyama T et al (2016) Involvement of TRPV4 in serotonin-evoked scratching. J Invest Dermatol 136(1):154–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Akiyama T, Carstens MI, Carstens E (2010) Enhanced scratching evoked by PAR-2 agonist and 5-HT but not histamine in a mouse model of chronic dry skin itch. Pain 151(2):378–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Andersen HH et al (2017) Antipruritic effect of pretreatment with topical capsaicin 8% on histamine- and cowhage-evoked itch in healthy volunteers: a randomized, vehicle-controlled, proof-of-concept trial. Br J Dermatol 177(1):107–116

    Article  CAS  PubMed  Google Scholar 

  6. Andersen HH, Arendt-Nielsen L, Gazerani P (2016) Glial cells are involved in itch processing. Acta Derm Venereol 96(6):723–727

    CAS  PubMed  Google Scholar 

  7. Andersen HH, Elberling J, Arendt-Nielsen L (2015) Human surrogate models of histaminergic and non-histaminergic itch. Acta Derm Venereol 95(7):771–777

    CAS  PubMed  Google Scholar 

  8. Andersen HH, Yosipovitch G, Galor A (2017) Neuropathic symptoms of the ocular surface: dryness, pain, and itch. Curr Opin Allergy Clin Immunol 17(5):373–381

    Article  PubMed  PubMed Central  Google Scholar 

  9. Andreev YA, Vassilevski AA, Kozlov SA (2012) Molecules to selectively target receptors for treatment of pain and neurogenic inflammation. Recent Pat Inflamm Allergy Drug Discov 6(1):35–45

    Article  CAS  PubMed  Google Scholar 

  10. Arndt J, Smith N, Tausk F (2008) Stress and atopic dermatitis. Curr Allergy Asthma Rep 8(4):312–317

    Article  CAS  PubMed  Google Scholar 

  11. Atanassoff PG et al (1999) Enhancement of experimental pruritus and mechanically evoked dysesthesiae with local anesthesia. Somatosens Mot Res 16(4):291–298

    Article  CAS  PubMed  Google Scholar 

  12. Atoyan R, Shander D, Botchkareva NV (2009) Non-neuronal expression of transient receptor potential type A1 (TRPA1) in human skin. J Invest Dermatol 129(9):2312–2315

    Article  CAS  PubMed  Google Scholar 

  13. Azim AAA et al (2015) Role of Interleukin-2 in uremic pruritus among attendants of al-zahraa hospital dialysis unit. Indian J Dermatol 60(2):211–211

    PubMed  PubMed Central  Google Scholar 

  14. Barcena de Arellano ML et al (2011) Influence of nerve growth factor in endometriosis-associated symptoms. Reprod Sci 18(12):1202–10

    Article  CAS  PubMed  Google Scholar 

  15. Baron R et al (2001) Histamine-induced itch converts into pain in neuropathic hyperalgesia. NeuroReport 12(16):3475–3478

    Article  CAS  PubMed  Google Scholar 

  16. Barry DM, Munanairi A, Chen ZF (2018) Spinal mechanisms of itch transmission. Neurosci Bull 34(1):156–164

    Article  PubMed  Google Scholar 

  17. Basbaum AI et al (2009) Cellular and molecular mechanisms of pain. Cell 139(2):267–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bautista DM, Pellegrino M, Tsunozaki M (2013) TRPA1: a gatekeeper for inflammation. Annu Rev Physiol 75:181–200

    Article  CAS  PubMed  Google Scholar 

  19. Billeter AT et al (2015) TRPA1 mediates the effects of hypothermia on the monocyte inflammatory response. Surgery 158(3):646–654

    Article  PubMed  Google Scholar 

  20. Binshtok AM et al (2008) Nociceptors are interleukin-1beta sensors. J Neurosci 28(52):14062–14073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Birklein F et al (1997) Effects of cutaneous histamine application in patients with sympathetic reflex dystrophy. Muscle Nerve 20(11):1389–1395

    Article  CAS  PubMed  Google Scholar 

  22. Black JA et al (2012) Expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to central preterminal branches and terminals in the dorsal horn. Mol Pain 8:82

    Article  PubMed  PubMed Central  Google Scholar 

  23. Boillat A, Alijevic O, Kellenberger S (2014) Calcium entry via TRPV1 but not ASICs induces neuropeptide release from sensory neurons. Mol Cell Neurosci 61:13–22

    Article  CAS  PubMed  Google Scholar 

  24. Brodal P (2005) The neurobiology of pain. Tidsskr Nor Laegeforen 125(17):2370–2373

    PubMed  Google Scholar 

  25. Brull SJ et al (1999) Attenuation of experimental pruritus and mechanically evoked dysesthesiae in an area of cutaneous allodynia. Somatosens Mot Res 16(4):299–303

    Article  CAS  PubMed  Google Scholar 

  26. Calvo M, Dawes JM, Bennett DL (2012) The role of the immune system in the generation of neuropathic pain. Lancet Neurol 11(7):629–642

    Article  CAS  PubMed  Google Scholar 

  27. Carstens E (2008) Scratching the brain to understand neuropathic itch. J Pain 9(11):973–974

    Article  PubMed  Google Scholar 

  28. Chevalier X, Eymard F, Richette P (2013) Biologic agents in osteoarthritis: hopes and disappointments. Nat Rev Rheumatol 9(7):400–410

    Article  CAS  PubMed  Google Scholar 

  29. Costa A et al (2014) Neuromodulatory and anti-inflammatory ingredient for sensitive skin: in vitro assessment. Inflamm Allergy Drug Targets 13(3):191–198

    Article  CAS  PubMed  Google Scholar 

  30. Dai Y et al (2007) Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest 117(7):1979–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Devigili G et al (2014) Paroxysmal itch caused by gain-of-function Nav1.7 mutation. Pain 155(9):1702–7

    Article  CAS  PubMed  Google Scholar 

  32. Dey DD, Landrum O, Oaklander AL (2005) Central neuropathic itch from spinal-cord cavernous hemangioma: a human case, a possible animal model, and hypotheses about pathogenesis. Pain 113(1–2):233–237

    Article  PubMed  Google Scholar 

  33. Dhand A, Aminoff MJ (2014) The neurology of itch. Brain 137(Pt 2):313–322

    Article  PubMed  Google Scholar 

  34. Dillon SR et al (2004) Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol 5(7):752–760

    Article  CAS  PubMed  Google Scholar 

  35. Diogenes A, Akopian AN, Hargreaves KM (2007) NGF up-regulates TRPA1: implications for orofacial pain. J Dent Res 86(6):550–555

    Article  CAS  PubMed  Google Scholar 

  36. Dou YC et al (2006) Increased nerve growth factor and its receptors in atopic dermatitis: an immunohistochemical study. Arch Dermatol Res 298(1):31–37

    Article  CAS  PubMed  Google Scholar 

  37. Dublin P, Hanani M (2007) Satellite glial cells in sensory ganglia: their possible contribution to inflammatory pain. Brain Behav Immun 21(5):592–598

    Article  CAS  PubMed  Google Scholar 

  38. Elkersh MA et al (2003) Epidural clonidine relieves intractable neuropathic itch associated with herpes zoster-related pain. Reg Anesth Pain Med 28(4):344–346

    CAS  PubMed  Google Scholar 

  39. Ezzat MH, Hasan ZE, Shaheen KY (2011) Serum measurement of interleukin-31 (IL-31) in paediatric atopic dermatitis: elevated levels correlate with severity scoring. J Eur Acad Dermatol Venereol 25(3):334–339

    Article  CAS  PubMed  Google Scholar 

  40. Gao YJ et al (2009) JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. J Neurosci 29(13):4096–4108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gao YJ et al (2010) The c-Jun N-terminal kinase 1 (JNK1) in spinal astrocytes is required for the maintenance of bilateral mechanical allodynia under a persistent inflammatory pain condition. Pain 148(2):309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gao YJ, Ji RR (2010) Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol Ther 126(1):56–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gonzales AJ et al (2013) Interleukin-31: its role in canine pruritus and naturally occurring canine atopic dermatitis. Vet Dermatol 24(1):48-53.e11–2

    Article  PubMed  CAS  Google Scholar 

  44. Gosselin RD et al (2005) Constitutive expression of CCR2 chemokine receptor and inhibition by MCP-1/CCL2 of GABA-induced currents in spinal cord neurones. J Neurochem 95(4):1023–1034

    Article  CAS  PubMed  Google Scholar 

  45. Gouin O et al (2015) Self-maintenance of neurogenic inflammation contributes to a vicious cycle in skin. Exp Dermatol 24(10):723–726

    Article  CAS  PubMed  Google Scholar 

  46. Gouin O et al (2017) TRPV1 and TRPA1 in cutaneous neurogenic and chronic inflammation: pro-inflammatory response induced by their activation and their sensitization. Protein Cell 8(9):644–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Grace PM et al (2014) Pathological pain and the neuroimmune interface. Nat Rev Immunol 14(4):217–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Green AD et al (2006) Influence of genotype, dose and sex on pruritogen-induced scratching behavior in the mouse. Pain 124(1–2):50–58

    Article  CAS  PubMed  Google Scholar 

  49. Green D, Dong X (2015) Supporting itch: a new role for astrocytes in chronic itch. Nat Med 21(8):841–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Grewe M et al (2000) Neurotrophin-4 production by human epidermal keratinocytes: increased expression in atopic dermatitis. J Invest Dermatol 114(6):1108–1112

    Article  CAS  PubMed  Google Scholar 

  51. Groneberg DA et al (2005) Gene expression and regulation of nerve growth factor in atopic dermatitis mast cells and the human mast cell line-1. J Neuroimmunol 161(1–2):87–92

    Article  CAS  PubMed  Google Scholar 

  52. Halvorson KG et al (2005) A blocking antibody to nerve growth factor attenuates skeletal pain induced by prostate tumor cells growing in bone. Cancer Res 65(20):9426–9435

    Article  CAS  PubMed  Google Scholar 

  53. Han L, Dong X (2014) Itch mechanisms and circuits. Annu Rev Biophys 43:331–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hanani M et al (2002) Glial cell plasticity in sensory ganglia induced by nerve damage. Neuroscience 114(2):279–283

    Article  CAS  PubMed  Google Scholar 

  55. Hanani M (2010) Satellite glial cells in sympathetic and parasympathetic ganglia: in search of function. Brain Res Rev 64(2):304–327

    Article  CAS  PubMed  Google Scholar 

  56. Harvey RJ et al (2004) GlyR alpha3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 304(5672):884–887

    Article  CAS  PubMed  Google Scholar 

  57. Hefti FF et al (2006) Novel class of pain drugs based on antagonism of NGF. Trends Pharmacol Sci 27(2):85–91

    Article  CAS  PubMed  Google Scholar 

  58. Herbert MK, Holzer P (2002) Neurogenic inflammation. I. Basic mechanisms, physiology and pharmacology. Anasthesiol Intensivmed Notfallmed Schmerzther 37(6):314–25

    Article  CAS  PubMed  Google Scholar 

  59. Heyer G et al (1995) Histamine-induced itch and alloknesis (itchy skin) in atopic eczema patients and controls. Acta Derm Venereol 75(5):348–352

    CAS  PubMed  Google Scholar 

  60. Heyer G et al (1997) Opiate and H1 antagonist effects on histamine induced pruritus and alloknesis. Pain 73(2):239–243

    Article  CAS  PubMed  Google Scholar 

  61. Hojland CR et al (2015) A human surrogate model of itch utilizing the TRPA1 agonist trans-cinnamaldehyde. Acta Derm Venereol 95(7):798–803

    PubMed  Google Scholar 

  62. Hon KL et al (2007) Pathophysiology of nocturnal scratching in childhood atopic dermatitis: the role of brain-derived neurotrophic factor and substance P. Br J Dermatol 157(5):922–925

    Article  CAS  PubMed  Google Scholar 

  63. Hosogi M et al (2006) Bradykinin is a potent pruritogen in atopic dermatitis: a switch from pain to itch. Pain 126(1–3):16–23

    Article  CAS  PubMed  Google Scholar 

  64. Ikoma A et al (2003) Neurophysiology of pruritus: interaction of itch and pain. Arch Dermatol 139(11):1475–1478

    PubMed  Google Scholar 

  65. Ikoma A et al (2003) Neuronal sensitization for histamine-induced itch in lesional skin of patients with atopic dermatitis. Arch Dermatol 139(11):1455–1458

    PubMed  Google Scholar 

  66. Ikoma A et al (2004) Painful stimuli evoke itch in patients with chronic pruritus: central sensitization for itch. Neurology 62(2):212–217

    Article  CAS  PubMed  Google Scholar 

  67. Ikoma A et al (2005) Electrically evoked itch in humans. Pain 113(1–2):148–154

    Article  PubMed  Google Scholar 

  68. Ikoma A et al (2006) The neurobiology of itch. Nat Rev Neurosci 7(7):535–547

    Article  CAS  PubMed  Google Scholar 

  69. Ikoma A et al (2011) Anatomy and neurophysiology of pruritus. Semin Cutan Med Surg 30(2):64–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Inoue K et al (2002) Functional vanilloid receptors in cultured normal human epidermal keratinocytes. Biochem Biophys Res Commun 291(1):124–129

    Article  CAS  PubMed  Google Scholar 

  71. Ishiuji Y et al (2008) Repetitive scratching and noxious heat do not inhibit histamine-induced itch in atopic dermatitis. Br J Dermatol 158(1):78–83

    CAS  PubMed  Google Scholar 

  72. Jain A et al (2011) TRP-channel-specific cutaneous eicosanoid release patterns. Pain 152(12):2765–2772

    Article  CAS  PubMed  Google Scholar 

  73. Jasmin L et al (2010) Can satellite glial cells be therapeutic targets for pain control? Neuron Glia Biol 6(1):63–71

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ji RR et al (2003) Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci 26(12):696–705

    Article  CAS  PubMed  Google Scholar 

  75. Ji RR (2015) Neuroimmune interactions in itch: do chronic itch, chronic pain, and chronic cough share similar mechanisms? Pulm Pharmacol Ther 35:81–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ji RR et al (2018) Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology 129(2):343–366

    Article  PubMed  Google Scholar 

  77. Ji RR, Chamessian A, Zhang YQ (2016) Pain regulation by non-neuronal cells and inflammation. Science 354(6312):572–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ji RR, Donnelly CR, Nedergaard M (2019) Astrocytes in chronic pain and itch. Nat Rev Neurosci 20(11):667–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ji RR, Suter MR (2007) p38 MAPK, microglial signaling, and neuropathic pain. Mol Pain 3:33

    PubMed  PubMed Central  Google Scholar 

  80. Jiang F et al (2009) Spinal astrocyte and microglial activation contributes to rat pain-related behaviors induced by the venom of scorpion Buthus martensi Karch. Eur J Pharmacol 623(1–3):52–64

    Article  CAS  PubMed  Google Scholar 

  81. Jin SX et al (2003) p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J Neurosci 23(10):4017–4022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Johansson O, Liang Y, Emtestam L (2002) Increased nerve growth factor- and tyrosine kinase A-like immunoreactivities in prurigo nodularis skin – an exploration of the cause of neurohyperplasia. Arch Dermatol Res 293(12):614–619

    Article  CAS  PubMed  Google Scholar 

  83. Katsuno M et al (2003) Neuropeptides concentrations in the skin of a murine (NC/Nga mice) model of atopic dermatitis. J Dermatol Sci 33(1):55–65

    Article  CAS  PubMed  Google Scholar 

  84. Kawasaki Y et al (2008) Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci 28(20):5189–5194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kidd BL, Urban LA (2001) Mechanisms of inflammatory pain. Br J Anaesth 87(1):3–11

    Article  CAS  PubMed  Google Scholar 

  86. Kim S et al (2016) Facilitation of TRPV4 by TRPV1 is required for itch transmission in some sensory neuron populations. Sci Signal 9(437):ra71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Kinkelin I et al (2000) Increase in NGF content and nerve fiber sprouting in human allergic contact eczema. Cell Tissue Res 302(1):31–37

    Article  CAS  PubMed  Google Scholar 

  88. Koltzenburg M (2000) Neural mechanisms of cutaneous nociceptive pain. Clin J Pain 16(3 Suppl):S131–S138

    Article  CAS  PubMed  Google Scholar 

  89. Kubanov AA, Katunina OR, Chikin VV (2015) Expression of neuropeptides, neurotrophins, and neurotransmitters in the skin of patients with atopic dermatitis and psoriasis. Bull Exp Biol Med 159(3):318–322

    Article  CAS  PubMed  Google Scholar 

  90. Kuruvilla M, Kalangara J, Lee FEE (2019) Neuropathic pain and itch mechanisms underlying allergic conjunctivitis. J Investig Allergol Clin Immunol 29(5):349–356

    Article  CAS  PubMed  Google Scholar 

  91. Kwak IS et al (2014) Immunohistochemical analysis of neuropeptides (protein gene product 9.5, substance P and calcitonin gene-related peptide) in hypertrophic burn scar with pain and itching. Burns 40(8):1661–7

    Article  PubMed  Google Scholar 

  92. van Laarhoven AI et al (2013) Sensitivity to itch and pain in patients with psoriasis and rheumatoid arthritis. Exp Dermatol 22(8):530–534

    Article  PubMed  Google Scholar 

  93. Lagerstrom MC et al (2010) VGLUT2-dependent sensory neurons in the TRPV1 population regulate pain and itch. Neuron 68(3):529–542

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Laird JM et al (2001) Role of central and peripheral tachykinin NK1 receptors in capsaicin-induced pain and hyperalgesia in mice. Pain 90(1–2):97–103

    Article  CAS  PubMed  Google Scholar 

  95. LaMotte RH et al (1991) Neurogenic hyperalgesia: psychophysical studies of underlying mechanisms. J Neurophysiol 66(1):190–211

    Article  CAS  PubMed  Google Scholar 

  96. LaMotte RH, Dong X, Ringkamp M (2014) Sensory neurons and circuits mediating itch. Nat Rev Neurosci 15(1):19–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lane NE et al (2010) Tanezumab for the treatment of pain from osteoarthritis of the knee. N Engl J Med 363(16):1521–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lanotte M et al (2013) Central neuropathic itch as the presenting symptom of an intramedullary cavernous hemangioma: case report and review of literature. Clin Neurol Neurosurg 115(4):454–456

    Article  PubMed  Google Scholar 

  99. Latremoliere A, Woolf CJ (2009) Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 10(9):895–926

    Article  PubMed  PubMed Central  Google Scholar 

  100. Lee CH et al (2012) Mechanistic correlations between two itch biomarkers, cytokine interleukin-31 and neuropeptide beta-endorphin, via STAT3/calcium axis in atopic dermatitis. Br J Dermatol 167(4):794–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lee JH et al (2014) A monoclonal antibody that targets a NaV1.7 channel voltage sensor for pain and itch relief. Cell 157(6):1393–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liang J, He Y, Ji W (2012) Bradykinin-evoked scratching responses in complete Freund’s adjuvant-inflamed skin through activation of B1 receptor. Exp Biol Med (Maywood) 237(3):318–326

    Article  CAS  Google Scholar 

  103. Linderoth B, Meyerson B (2001) Peripheral and central nervous system stimulation in chronic therapy-resistant pain. Background, hypothetical mechanisms and clinical experiences. Lakartidningen 98(47):5328–34 (5336)

    CAS  PubMed  Google Scholar 

  104. Liu Y et al (2010) VGLUT2-dependent glutamate release from nociceptors is required to sense pain and suppress itch. Neuron 68(3):543–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Liu XY et al (2011) Unidirectional cross-activation of GRPR by MOR1D uncouples itch and analgesia induced by opioids. Cell 147(2):447–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Liu FY et al (2012) Activation of satellite glial cells in lumbar dorsal root ganglia contributes to neuropathic pain after spinal nerve ligation. Brain Res 1427:65–77

    Article  CAS  PubMed  Google Scholar 

  107. Liu T et al (2012) TLR3 deficiency impairs spinal cord synaptic transmission, central sensitization, and pruritus in mice. J Clin Invest 122(6):2195–2207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Liu T et al (2012) TLR3 deficiency impairs spinal cord synaptic transmission, central sensitization, and pruritus in mice. J Clin Investig 122(6):2195–2207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu B et al (2013) TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis. FASEB J 27(9):3549–3563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Liu T et al (2016) Toll-like receptor 4 contributes to chronic itch, alloknesis, and spinal astrocyte activation in male mice. Pain 157(4):806–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu B-W et al (2019) Altered expression of itch-related mediators in the lower cervical spinal cord in mouse models of two types of chronic itch. Int J Mol Med 44(3):835–846

    PubMed  PubMed Central  Google Scholar 

  112. Liu T, Ji R-R (2013) New insights into the mechanisms of itch: are pain and itch controlled by distinct mechanisms? Pflugers Arch 465(12):1671–1685

    Article  CAS  PubMed  Google Scholar 

  113. Malin S et al (2011) TRPV1 and TRPA1 function and modulation are target tissue dependent. J Neurosci 31(29):10516–10528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Meseguer V et al (2014) TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins. Nat Commun 5:3125

    Article  PubMed  CAS  Google Scholar 

  115. Metze D et al (1997) Persistent pruritus after hydroxyethyl starch infusion therapy: a result of long-term storage in cutaneous nerves. Br J Dermatol 136(4):553–559

    Article  CAS  PubMed  Google Scholar 

  116. Mogil JS et al (2005) Variable sensitivity to noxious heat is mediated by differential expression of the CGRP gene. Proc Natl Acad Sci U S A 102(36):12938–12943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Moniaga CS et al (2013) Protease activity enhances production of thymic stromal lymphopoietin and basophil accumulation in flaky tail mice. Am J Pathol 182(3):841–851

    Article  CAS  PubMed  Google Scholar 

  118. Murota H et al (2012) Artemin causes hypersensitivity to warm sensation, mimicking warmth-provoked pruritus in atopic dermatitis. J Allergy Clin Immunol 130(3):671-682.e4

    Article  CAS  PubMed  Google Scholar 

  119. Muto Y et al (2012) Activation of NK1 receptors in the locus coeruleus induces analgesia through noradrenergic-mediated descending inhibition in a rat model of neuropathic pain. Br J Pharmacol 166(3):1047–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nathan PW (1990) Touch and surgical division of the anterior quadrant of the spinal cord. J Neurol Neurosurg Psychiatry 53(11):935–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Nattkemper LA et al (2013) Overexpression of the gastrin-releasing peptide in cutaneous nerve fibers and its receptor in the spinal cord in primates with chronic itch. J Invest Dermatol 133(10):2489–2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Nicolson TA et al (2007) Prostaglandin E2 sensitizes primary sensory neurons to histamine. Neuroscience 150(1):22–30

    Article  CAS  PubMed  Google Scholar 

  123. Nilsson HJ, Levinsson A, Schouenborg J (1997) Cutaneous field stimulation (CFS): a new powerful method to combat itch. Pain 71(1):49–55

    Article  CAS  PubMed  Google Scholar 

  124. Nilsson HJ, Schouenborg J (1999) Differential inhibitory effect on human nociceptive skin senses induced by local stimulation of thin cutaneous fibers. Pain 80(1–2):103–112

    Article  CAS  PubMed  Google Scholar 

  125. Obata K et al (2005) TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J Clin Invest 115(9):2393–2401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Oh M-H et al (2013) TRPA1-dependent pruritus in IL-13-induced chronic atopic dermatitis. J Immunol 191(11):5371–5382 ((Baltimore, Md. : 1950))

    Article  CAS  PubMed  Google Scholar 

  127. Ohara PT et al (2009) Gliopathic pain: when satellite glial cells go bad. Neuroscientist 15(5):450–463

    Article  PubMed  PubMed Central  Google Scholar 

  128. Ozawa M et al (2009) Neuroselective transcutaneous electrical stimulation reveals neuronal sensitization in atopic dermatitis. J Am Acad Dermatol 60(4):609–614

    Article  PubMed  Google Scholar 

  129. Peirs C, Seal RP (2016) Neural circuits for pain: recent advances and current views. Science 354(6312):578–584

    Article  CAS  PubMed  Google Scholar 

  130. Pogatzki-Zahn E et al (2008) Chronic pruritus: targets, mechanisms and future therapies. Drug News Perspect 21(10):541–551

    CAS  PubMed  Google Scholar 

  131. Potenzieri C, Undem BJ (2012) Basic mechanisms of itch. Clin Exp Allergy 42(1):8–19

    Article  CAS  PubMed  Google Scholar 

  132. Poulsen JN et al (2015) Oxaliplatin enhances gap junction-mediated coupling in cell cultures of mouse trigeminal ganglia. Exp Cell Res 336(1):94–99

    Article  CAS  PubMed  Google Scholar 

  133. Rajasekhar P et al (2015) P2Y1 receptor activation of the trpv4 ion channel enhances purinergic signaling in satellite glial cells. J Biol Chem 290(48):29051–29062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ramos KM et al (2010) Spinal upregulation of glutamate transporter GLT-1 by ceftriaxone: therapeutic efficacy in a range of experimental nervous system disorders. Neuroscience 169(4):1888–1900

    Article  CAS  PubMed  Google Scholar 

  135. Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353(6301):777–783

    Article  CAS  PubMed  Google Scholar 

  136. Ren K, Dubner R (2010) Interactions between the immune and nervous systems in pain. Nat Med 16(11):1267–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Robering JW et al (2019) Lysophosphatidic acid activates satellite glia cells and Schwann cells. Glia 67(5):999–1012

    Article  PubMed  Google Scholar 

  138. Roosterman D et al (2006) Neuronal control of skin function: the skin as a neuroimmunoendocrine organ. Physiol Rev 86(4):1309–1379

    Article  CAS  PubMed  Google Scholar 

  139. Ross SE et al (2010) Loss of inhibitory interneurons in the dorsal spinal cord and elevated itch in Bhlhb5 mutant mice. Neuron 65(6):886–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Rukwied RR et al (2013) NGF sensitizes nociceptors for cowhage- but not histamine-induced itch in human skin. J Invest Dermatol 133(1):268–270

    Article  CAS  PubMed  Google Scholar 

  141. Sandkuhler J (2009) Models and mechanisms of hyperalgesia and allodynia. Physiol Rev 89(2):707–758

    Article  PubMed  CAS  Google Scholar 

  142. Sanga P et al (2013) Efficacy, safety, and tolerability of fulranumab, an anti-nerve growth factor antibody, in the treatment of patients with moderate to severe osteoarthritis pain. Pain 154(10):1910–1919

    Article  CAS  PubMed  Google Scholar 

  143. Scheib J, Hoke A (2013) Advances in peripheral nerve regeneration. Nat Rev Neurol 9(12):668–676

    Article  CAS  PubMed  Google Scholar 

  144. Scheinfeld N (2003) The role of gabapentin in treating diseases with cutaneous manifestations and pain. Int J Dermatol 42(6):491–495

    Article  CAS  PubMed  Google Scholar 

  145. Schmelz M et al (2003) Active “itch fibers” in chronic pruritus. Neurology 61(4):564–566

    Article  CAS  PubMed  Google Scholar 

  146. Schmelz M et al (2003) Chemical response pattern of different classes of C-nociceptors to pruritogens and algogens. J Neurophysiol 89(5):2441–2448

    Article  CAS  PubMed  Google Scholar 

  147. Schmelz M (2010) Itch and pain. Neurosci Biobehav Rev 34(2):171–176

    Article  CAS  PubMed  Google Scholar 

  148. Schmelz M (2015) Itch and pain differences and commonalities. Handb Exp Pharmacol 227:285–301

    Article  CAS  PubMed  Google Scholar 

  149. Shang H et al (2016) IL-4 gene polymorphism may contribute to an increased risk of atopic dermatitis in children. Dis Markers 2016:1021942–1021942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Shiratori-Hayashi M et al (2015) STAT3-dependent reactive astrogliosis in the spinal dorsal horn underlies chronic itch. Nat Med 21(8):927–931

    Article  CAS  PubMed  Google Scholar 

  151. Silva CR et al (2011) The involvement of TRPA1 channel activation in the inflammatory response evoked by topical application of cinnamaldehyde to mice. Life Sci 88(25–26):1077–1087

    Article  CAS  PubMed  Google Scholar 

  152. Simone DA et al (2004) Comparison of responses of primate spinothalamic tract neurons to pruritic and algogenic stimuli. J Neurophysiol 91(1):213–222

    Article  PubMed  Google Scholar 

  153. Simone DA, Alreja M, LaMotte RH (1991) Psychophysical studies of the itch sensation and itchy skin (“alloknesis”) produced by intracutaneous injection of histamine. Somatosens Mot Res 8(3):271–279

    Article  CAS  PubMed  Google Scholar 

  154. Singh F, Rudikoff D (2003) HIV-associated pruritus: etiology and management. Am J Clin Dermatol 4(3):177–188

    Article  PubMed  Google Scholar 

  155. Siniscalco D et al (2005) Neuropathic pain: is the end of suffering starting in the gene therapy? Curr Drug Targets 6(1):75–80

    Article  CAS  PubMed  Google Scholar 

  156. Smolyannikova VA et al (2015) Role of the skin expression of neuropeptides, neurotrophins and their receptors in the pathogenesis of dermatoses. Arkh Patol 77(4):33–39

    Article  CAS  PubMed  Google Scholar 

  157. Sonkoly E et al (2006) IL-31: a new link between T cells and pruritus in atopic skin inflammation. J Allergy Clin Immunol 117(2):411–417

    Article  CAS  PubMed  Google Scholar 

  158. Stander S et al (2002) Hydroxyethyl starch does not cross the blood-brain or the placental barrierbut the perineurium of peripheral nerves in infused animals. Cell Tissue Res 310(3):279–287

    Article  CAS  PubMed  Google Scholar 

  159. Ständer S et al (2010) Targeting the neurokinin receptor 1 with aprepitant: a novel antipruritic strategy. PLoS ONE 5(6):e10968–e10968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Starnowska J et al (2017) Analgesic properties of opioid/NK1 multitarget ligands with distinct in vitro profiles in naive and chronic constriction injury mice. ACS Chem Neurosci 8(10):2315–2324

    Article  CAS  PubMed  Google Scholar 

  161. Steinhoff M et al (2003) Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J Neurosci 23(15):6176–6180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Steinhoff M et al (2006) Neurophysiological, neuroimmunological, and neuroendocrine basis of pruritus. J Invest Dermatol 126(8):1705–1718

    Article  CAS  PubMed  Google Scholar 

  163. Story GM et al (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112(6):819–829

    Article  CAS  PubMed  Google Scholar 

  164. Sun RQ et al (2004) Calcitonin gene-related peptide receptor activation produces PKA- and PKC-dependent mechanical hyperalgesia and central sensitization. J Neurophysiol 92(5):2859–2866

    Article  CAS  PubMed  Google Scholar 

  165. Takaoka A et al (2005) Expression of IL-31 gene transcripts in NC/Nga mice with atopic dermatitis. Eur J Pharmacol 516(2):180–181

    Article  CAS  PubMed  Google Scholar 

  166. Tanaka A, Matsuda H (2005) Expression of nerve growth factor in itchy skins of atopic NC/NgaTnd mice. J Vet Med Sci 67(9):915–919

    Article  CAS  PubMed  Google Scholar 

  167. Todd AJ (2010) Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci 11(12):823–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Tominaga M et al (2007) A hypothetical mechanism of intraepidermal neurite formation in NC/Nga mice with atopic dermatitis. J Dermatol Sci 46(3):199–210

    Article  CAS  PubMed  Google Scholar 

  169. Tominaga M et al (2009) Psoralen-ultraviolet A therapy alters epidermal Sema3A and NGF levels and modulates epidermal innervation in atopic dermatitis. J Dermatol Sci 55(1):40–46

    Article  CAS  PubMed  Google Scholar 

  170. Tominaga M, Takamori K (2014) Itch and nerve fibers with special reference to atopic dermatitis: therapeutic implications. J Dermatol 41(3):205–212

    Article  CAS  PubMed  Google Scholar 

  171. Toyoda M et al (2002) Nerve growth factor and substance P are useful plasma markers of disease activity in atopic dermatitis. Br J Dermatol 147(1):71–79

    Article  CAS  PubMed  Google Scholar 

  172. Toyoda M et al (2003) Localization and content of nerve growth factor in peripheral blood eosinophils of atopic dermatitis patients. Clin Exp Allergy 33(7):950–955

    Article  CAS  PubMed  Google Scholar 

  173. Trevisani M et al (2007) 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad Sci U S A 104(33):13519–13524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Tsuda M (2018) Modulation of Pain and Itch by Spinal Glia. Neurosci Bull 34(1):178–185

    Article  PubMed  Google Scholar 

  175. Vellani V et al (2010) Protease activated receptors 1 and 4 sensitize TRPV1 in nociceptive neurones. Mol Pain 6:61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Verge VM et al (1995) Differential influence of nerve growth factor on neuropeptide expression in vivo: a novel role in peptide suppression in adult sensory neurons. J Neurosci 15(3 Pt 1):2081–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Vikman KS, Duggan AW, Siddall PJ (2007) Interferon-gamma induced disruption of GABAergic inhibition in the spinal dorsal horn in vivo. Pain 133(1–3):18–28

    Article  CAS  PubMed  Google Scholar 

  178. Vincent L et al (2013) Mast cell activation contributes to sickle cell pathobiology and pain in mice. Blood 122(11):1853–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wang S et al (2008) Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain. Brain 131(Pt 5):1241–1251

    Article  PubMed  Google Scholar 

  180. Watanabe T et al (2011) Nerve growth factor level in the prostatic fluid of patients with chronic prostatitis/chronic pelvic pain syndrome is correlated with symptom severity and response to treatment. BJU Int 108(2):248–251

    Article  CAS  PubMed  Google Scholar 

  181. Wei Z et al (2019) Emerging role of schwann cells in neuropathic pain: receptors, glial mediators and myelination. Front Cell Neurosci 13:116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Weisshaar CL, Winkelstein BA (2014) Ablating spinal NK1-bearing neurons eliminates the development of pain and reduces spinal neuronal hyperexcitability and inflammation from mechanical joint injury in the rat. J Pain 15(4):378–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Wilson SR et al (2011) TRPA1 is required for histamine-independent, Mas-related G protein-coupled receptor-mediated itch. Nat Neurosci 14(5):595–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Wilson SR et al (2013) The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 155(2):285–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wilson SR et al (2013) The ion channel TRPA1 is required for chronic itch. J Neurosci 33(22):9283–9294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Woolf CJ (1983) Evidence for a central component of post-injury pain hypersensitivity. Nature 306(5944):686–688

    Article  CAS  PubMed  Google Scholar 

  187. Woolf CJ, Salter MW (2000) Neuronal plasticity: increasing the gain in pain. Science 288(5472):1765–1769

    Article  CAS  PubMed  Google Scholar 

  188. Xie R-G et al (2018) Spinal CCL2 promotes central sensitization, long-term potentiation, and inflammatory pain via CCR2: Further insights into molecular, synaptic, and cellular mechanisms. Neurosci Bull 34(1):13–21

    Article  CAS  PubMed  Google Scholar 

  189. Xin WJ, Weng HR, Dougherty PM (2009) Plasticity in expression of the glutamate transporters GLT-1 and GLAST in spinal dorsal horn glial cells following partial sciatic nerve ligation. Mol Pain 5:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Yamaguchi J et al (2009) Quantitative analysis of nerve growth factor (NGF) in the atopic dermatitis and psoriasis horny layer and effect of treatment on NGF in atopic dermatitis. J Dermatol Sci 53(1):48–54

    Article  CAS  PubMed  Google Scholar 

  191. Yeh JF et al (2017) Monoclonal antibodies for chronic pain: a practical review of mechanisms and clinical applications. Mol Pain 13:1744806917740233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Yosipovitch G, Berger T, Fassett MS (2020) Neuroimmune interactions in chronic itch of atopic dermatitis. Journal of the European Academy of Dermatology and Venereology : JEADV 34(2):239–250

    Article  CAS  PubMed  Google Scholar 

  193. Yosipovitch G, Greaves MW, Schmelz M (2003) Itch. Lancet 361(9358):690–4

    Article  PubMed  Google Scholar 

  194. Yusuf N et al (2009) Heat shock proteins HSP27 and HSP70 are present in the skin and are important mediators of allergic contact hypersensitivity. J Immunol 182(1):675–683

    Article  CAS  PubMed  Google Scholar 

  195. Zhang H et al (2009) Altered functional properties of satellite glial cells in compressed spinal ganglia. Glia 57(15):1588–1599

    Article  PubMed  PubMed Central  Google Scholar 

  196. Zhang Y et al (2015) Microglia are involved in pruritus induced by DNFB via the CX3CR1/p38 MAPK pathway. Cell Physiol Biochem 35(3):1023–1033

    Article  CAS  PubMed  Google Scholar 

  197. Zhao P et al (2014) Cathepsin S causes inflammatory pain via biased agonism of PAR2 and TRPV4. J Biol Chem 289(39):27215–27234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Ziegler SF et al (2013) The biology of thymic stromal lymphopoietin (TSLP). Adv Pharmacol 66:129–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Zygmunt PM et al (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400(6743):452–457

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Science Foundation for Young Scientists of China program, funded by the National Natural Science Foundation of China (NSFC), Project No. 81901150 (H0903).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seung Keun Back or Heung Sik Na.

Ethics declarations

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Kim, H.J., Back, S.K. et al. Common and discrete mechanisms underlying chronic pain and itch: peripheral and central sensitization. Pflugers Arch - Eur J Physiol 473, 1603–1615 (2021). https://doi.org/10.1007/s00424-021-02599-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-021-02599-y

Keywords

Navigation