Skip to main content
Log in

Smooth muscle filamin A is a major determinant of conduit artery structure and function at the adult stage

  • Integrative physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Human mutations in the X-linked FLNA gene are associated with a remarkably diverse phenotype, including severe arterial morphological anomalies. However, the role for filamin A (FlnA) in vascular cells remains partially understood. We used a smooth muscle (sm)-specific conditional mouse model to delete FlnA at the adult stage, thus avoiding the developmental effects of the knock-out. Inactivation of smFlnA in adult mice significantly lowered blood pressure, together with a decrease in pulse pressure. However, both the aorta and carotid arteries showed a major outward hypertrophic remodeling, resistant to losartan, and normally occurring in hypertensive conditions. Notably, arterial compliance was significantly enhanced in the absence of smFlnA. Moreover, reactivity of thoracic aorta rings to a variety of vasoconstrictors was elevated, while basal contractility in response to KCl depolarization was reduced. Enhanced reactivity to the thromboxane A2 receptor agonist U46619 was fully reversed by the ROCK inhibitor Y27632. We discuss the possibility that a reduction in arterial stiffness upon smFlnA inactivation might cause a compensatory increase in conduit artery diameter for normalization of parietal tension, independently of the ROCK pathway. In conclusion, deletion of smFlnA in adult mice recapitulates the vascular phenotype of human bilateral periventricular nodular heterotopia, culminating in aortic dilatation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. de Wit MC, Kros JM, Halley DJ, de Coo IF, Verdijk R, Jacobs BC, Mancini GM (2009) Filamin A mutation, a common cause for periventricular heterotopia, aneurysms and cardiac defects. J Neurol Neurosurg Psychiatry 80:426–428

    Article  PubMed  Google Scholar 

  2. Delbosc S, Haloui M, Louedec L, Dupuis M, Cubizolles M, Podust VN, Fung ET, Michel JB, Meilhac O (2008) Proteomic analysis permits the identification of new biomarkers of arterial wall remodeling in hypertension. Mol Med 14:383–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ehrlicher AJ, Nakamura F, Hartwig JH, Weitz DA, Stossel TP (2011) Mechanical strain in actin networks regulates FilGAP and integrin binding to filamin A. Nature 478:260–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Feng Y, Chen MH, Moskowitz IP, Mendonza AM, Vidali L, Nakamura F, Kwiatkowski DJ, Walsh CA (2006) Filamin A (FLNA) is required for cell-cell contact in vascular development and cardiac morphogenesis. Proc Natl Acad Sci U S A 103:19836–19841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Feng Y, Walsh CA (2004) The many faces of filamin: a versatile molecular scaffold for cell motility and signalling. Nat Cell Biol 6:1034–1038

    Article  CAS  PubMed  Google Scholar 

  6. Fox JW, Lamperti ED, Eksioglu YZ, Hong SE, Feng Y, Graham DA, Scheffer IE, Dobyns WB, Hirsch BA, Radtke RA, Berkovic SF, Huttenlocher PR, Walsh CA (1998) Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron 21:1315–1325

    Article  CAS  PubMed  Google Scholar 

  7. Gorlin JB, Yamin R, Egan S, Stewart M, Stossel TP, Kwiatkowski DJ, Hartwig JH (1990) Human endothelial actin-binding protein (ABP-280, nonmuscle filamin): a molecular leaf spring. J Cell Biol 111:1089–1105

    Article  CAS  PubMed  Google Scholar 

  8. Gusev NB, Pritchard K, Hodgkinson JL, Marston SB (1994) Filamin and gelsolin influence Ca(2+)-sensitivity of smooth muscle thin filaments. J Muscle Res Cell Motil 15:672–681

    Article  CAS  PubMed  Google Scholar 

  9. Hart AW, Morgan JE, Schneider J, West K, McKie L, Bhattacharya S, Jackson IJ, Cross SH (2006) Cardiac malformations and midline skeletal defects in mice lacking filamin A. Hum Mol Genet 15:2457–2467

    Article  CAS  PubMed  Google Scholar 

  10. Kainulainen T, Pender A, D’Addario M, Feng Y, Lekic P, McCulloch CA (2002) Cell death and mechanoprotection by filamin a in connective tissues after challenge by applied tensile forces. J Biol Chem 277:21998–22009

    Article  CAS  PubMed  Google Scholar 

  11. Kiema T, Lad Y, Jiang P, Oxley CL, Baldassarre M, Wegener KL, Campbell ID, Ylanne J, Calderwood DA (2006) The molecular basis of filamin binding to integrins and competition with talin. Mol Cell 21:337–347

    Article  CAS  PubMed  Google Scholar 

  12. Kyndt F, Gueffet JP, Probst V, Jaafar P, Legendre A, Le Bouffant F, Toquet C, Roy E, McGregor L, Lynch SA, Newbury-Ecob R, Tran V, Young I, Trochu JN, Le Marec H, Schott JJ (2007) Mutations in the gene encoding filamin A as a cause for familial cardiac valvular dystrophy. Circulation 115:40–49

    Article  CAS  PubMed  Google Scholar 

  13. Loirand G, Guerin P, Pacaud P (2006) Rho kinases in cardiovascular physiology and pathophysiology. Circ Res 98:322–334

    Article  CAS  PubMed  Google Scholar 

  14. Mulvany MJ (2002) Small artery remodeling and significance in the development of hypertension. News Physiol Sci 17:105–109

    PubMed  Google Scholar 

  15. Nakamura F, Stossel TP, Hartwig JH (2011) The filamins: organizers of cell structure and function. Cell Adhes Migr 5:160–169

    Article  Google Scholar 

  16. Parrini E, Ramazzotti A, Dobyns WB, Mei D, Moro F, Veggiotti P, Marini C, Brilstra EH, Dalla Bernardina B, Goodwin L, Bodell A, Jones MC, Nangeroni M, Palmeri S, Said E, Sander JW, Striano P, Takahashi Y, Van Maldergem L, Leonardi G, Wright M, Walsh CA, Guerrini R (2006) Periventricular heterotopia: phenotypic heterogeneity and correlation with Filamin A mutations. Brain 129:1892–1906

    Article  CAS  PubMed  Google Scholar 

  17. Peyronnet R, Martins JR, Duprat F, Demolombe S, Arhatte M, Jodar M, Tauc M, Duranton C, Paulais M, Teulon J, Honore E, Patel A (2013) Piezo1-dependent stretch-activated channels are inhibited by Polycystin-2 in renal tubular epithelial cells. EMBO Rep 14:1143–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Peyronnet R, Sharif-Naeini R, Folgering JH, Arhatte M, Jodar M, El Boustany C, Gallian C, Tauc M, Duranton C, Rubera I, Lesage F, Pei Y, Peters DJ, Somlo S, Sachs F, Patel A, Honore E, Duprat F (2012) Mechanoprotection by polycystins against apoptosis is mediated through the opening of stretch-activated K(2P) channels. Cell Rep 1:241–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pilop C, Aregger F, Gorman RC, Brunisholz R, Gerrits B, Schaffner T, Gorman JH III, Matyas G, Carrel T, Frey BM (2009) Proteomic analysis in aortic media of patients with marfan syndrome reveals increased activity of calpain 2 in aortic aneurysms. Circulation

  20. Poussaint TY, Fox JW, Dobyns WB, Radtke R, Scheffer IE, Berkovic SF, Barnes PD, Huttenlocher PR, Walsh CA (2000) Periventricular nodular heterotopia in patients with filamin-1 gene mutations: neuroimaging findings. Pediatr Radiol 30:748–755

    Article  CAS  PubMed  Google Scholar 

  21. Razinia Z, Makela T, Ylanne J, Calderwood DA (2012) Filamins in mechanosensing and signaling. Annu Rev Biophys 41:227–246

    Article  CAS  PubMed  Google Scholar 

  22. Reinstein E, Frentz S, Morgan T, Garcia-Minaur S, Leventer RJ, McGillivray G, Pariani M, van der Steen A, Pope M, Holder-Espinasse M, Scott R, Thompson EM, Robertson T, Coppin B, Siegel R, Bret Zurita M, Rodriguez JI, Morales C, Rodrigues Y, Arcas J, Saggar A, Horton M, Zackai E, Graham JM, Rimoin DL, Robertson SP (2013) Vascular and connective tissue anomalies associated with X-linked periventricular heterotopia due to mutations in Filamin A. Eur J Hum Genet 21:494–502

    Article  CAS  PubMed  Google Scholar 

  23. Retailleau K, Arhatte M, Demolombe S, Peyronnet R, Baudrie V, Jodar M, Bourreau J, Henrion D, Offermanns S, Nakamura F, Feng Y, Patel A, Duprat F, Honore E (2016) Arterial myogenic activation through smooth muscle filamin A. Cell Rep 14:2050–2058

  24. Retailleau K, Duprat F, Arhatte M, Ranade SS, Peyronnet R, Martins JR, Jodar M, Moro C, Offermanns S, Feng Y, Demolombe S, Patel A, Honoré E (2015) Piezo1 in smooth muscle cells is involved in hypertension-dependent arterial remodeling. Cell Rep 13:1161–1171

    Article  CAS  PubMed  Google Scholar 

  25. Robertson SP (2005) Filamin A: phenotypic diversity. Curr Opin Genet Dev 15:301–307

    Article  CAS  PubMed  Google Scholar 

  26. Sharif Naeini R, Folgering J, Bichet D, Duprat F, Lauritzen I, Arhatte M, Jodar M, Dedman A, Chatelain FC, Schulte U, Retailleau K, Loufrani L, Patel A, Sachs F, Delmas P, Peters DJ, Honoré E (2009) Polycystin-1 and −2 dosage regulates pressure sensing. Cell 139:587–596

    Article  CAS  PubMed  Google Scholar 

  27. Sheen VL, Jansen A, Chen MH, Parrini E, Morgan T, Ravenscroft R, Ganesh V, Underwood T, Wiley J, Leventer R, Vaid RR, Ruiz DE, Hutchins GM, Menasha J, Willner J, Geng Y, Gripp KW, Nicholson L, Berry-Kravis E, Bodell A, Apse K, Hill RS, Dubeau F, Andermann F, Barkovich J, Andermann E, Shugart YY, Thomas P, Viri M, Veggiotti P, Robertson S, Guerrini R, Walsh CA (2005) Filamin A mutations cause periventricular heterotopia with Ehlers-Danlos syndrome. Neurology 64:254–262

    Article  CAS  PubMed  Google Scholar 

  28. Stendahl OI, Stossel TP (1980) Actin-binding protein amplifies actomyosin contraction, and gelsolin confers calcium control on the direction of contraction. Biochem Biophys Res Commun 92:675–681

    Article  CAS  PubMed  Google Scholar 

  29. Stossel TP, Condeelis J, Cooley L, Hartwig JH, Noegel A, Schleicher M, Shapiro SS (2001) Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol 2:138–145

    Article  CAS  PubMed  Google Scholar 

  30. Subramanian V, Moorleghen JJ, Balakrishnan A, Howatt DA, Chishti AH, Uchida HA (2013) Calpain-2 compensation promotes angiotensin II-induced ascending and abdominal aortic aneurysms in calpain-1 deficient mice. PLoS One 8, e72214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou X, Boren J, Akyurek LM (2007) Filamins in cardiovascular development. Trends Cardiovasc Med 17:222–229

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the Agence Nationale de la Recherche (ANR) for ANR 2008 “Du gène à la physiopathologie; des maladies rares aux maladies communes” and ANR 2011 “Physiologie, physiopathologie, santé publique”, to the Fondation de la recherche médicale, to the Fondation de recherche sur l’hypertension artérielle, to the Fondation de France, to the Fondation Lefoulon-Delalande, to the Société Française d’hypertension artérielle, to the Université de Nice Sophia Antipolis, to the Centre National de la Recherche Scientifique (CNRS) “défi mécanobiologie” and to the Institut National de la Santé et de la Recherche Médicale (Inserm) for financial support. We thank Dr. Fumihiko Nakamura for providing the 1–7 monoclonal FlnA antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Honoré.

Additional information

Eric Honoré and Fabrice Duprat are both co-last authors

Kevin Retailleau and Malika Arhatte contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Low blood pressure in the absence of smFlnA. a) Diastolic arterial pressure, recorded using telemetry at day and night times as indicated, in conscious smFlnA0/+ (white bars) or smFlnA0/- (black bars) mice at 12 weeks post-TAM induction, b) Systolic arterial pressure, and c) Pulse pressure in the same animals as in a. Number of mice analyzed is indicated at the bottom of the graphs. (PDF 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Retailleau, K., Arhatte, M., Demolombe, S. et al. Smooth muscle filamin A is a major determinant of conduit artery structure and function at the adult stage. Pflugers Arch - Eur J Physiol 468, 1151–1160 (2016). https://doi.org/10.1007/s00424-016-1813-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-016-1813-x

Keywords

Navigation