Skip to main content
Log in

Filamin and gelsolin influence Ca2+-sensitivity of smooth muscle thin filaments

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Sheep aorta thin filaments were prepared by ultracentrifugation of an ATP-containing extract in the presence of different concentrations of ethanediol. Thin filaments prepared without ethanediol contained small quantities of tropomyosin (0.027 Tm:actin) and caldesmon (0.017 CD:actin) and activated the MgATPase of skeletal myosin independently of Ca2+. Ultracentrifugation in the presence of 10–20% ethanediol resulted in preparation of thin filaments with increased content of tropomyosin (0.17 Tm:actin) and caldesmon (0.04 CD:actin). These thin filaments possessed high Ca2+-sensitivity in activation of skeletal muscle myosin ATPase. Besides actin, tropomyosin and caldesmon, thin filaments contained gelsolin and filamin. Gelsolin content (0.007 gelsolin:actin) was independent of the presence of ethanediol. The filamin content decreased from 0.015 to 0.007 mol:mol actin when the ethanediol concentration was increased from 0 to 20%, and was negatively correlated with the Ca2+ sensitivity of thin filaments. In a reconstituted system, pure filamin or gelsolin affected caldesmon regulation of actomyosin ATPase. Gelsolin (0.01:actin) reduced the inhibition of actomyosin ATPase caused by caldesmon and increased the potency of Ca2+-calmodulin in reversing this inhibition. Filamin (0.007:actin) also decreased the inhibitory action of caldesmon on actin-activated myosin ATPase and also potentiated the reversal of this inhibition by calmodulin. We conclude that minor components of smooth muscle thin filaments (gelsolin and filamin) significantly modify caldesmon mediated regulation of actomyosin ATPase. We suggest a tropomyosin-mediated mechanism by which filamin or gelsolin could exert similar effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • BARTEGI, A., FATTOUM, A. & KASSAB, R. (1990) Cross-linking of smooth muscle caldesmon to the NH2-terminal region of skeletal F-actin. J. Biol. Chem. 265, 2231–7.

    Google Scholar 

  • BOGATCHEVA, N. V., PANAIOTOV, M. P., VOROTNIKOV, A. V. & GUSEV, N. B. (1993) Effect of 67 kDa calcimedin on caldesmon functioning. FEBS Lett. 335, 193–7.

    Google Scholar 

  • BRETSCHER, A. (1984) Smooth muscle caldesmon. J. Biol. Chem. 259, 12873–80.

    Google Scholar 

  • CHALOVICH, J. M. (1988) Caldesmon and thin-filament regulation of muscle contraction. Cell Biophys. 12, 73–85.

    Google Scholar 

  • CHALOVICH, J. M., CORNELIUS, P. & BENSON, C. E. (1987) Caldesmon inhibits skeletal actomyosin subfragment-1 ATPase and the binding of subfragment-1 to actin. J. Biol. Chem. 262, 5711–16.

    Google Scholar 

  • CUNEO, P., MAGRI, E., VERZOLA, A. & GRAZI, E. (1992) ‘Macromolecular crowding’ is a primary factor in the organization of the cytoskeleton. Biochem. J. 281, 507–12.

    Google Scholar 

  • DABROWSKA, R., GOCH, A., OSINSKA, H., SZPACENKO, A. & SOSINSKI, J. (1985) Dual effect of filamin on actomyosin ATPase activity. J. Muscle Res. Cell Motil. 6, 29–42.

    Google Scholar 

  • DAVIES, P. J., WALLACH, D., WILLINGHAM, M. C., PASTAN, I., YAMAGUCHI, M. & ROBSON, R. M. (1978) Filamin-actin interaction. J. Biol. Chem. 253, 4036–42.

    Google Scholar 

  • DISSMANN, E., GIMONA, M. & HINSSEN, H. (1993) Immunocytochemical localization of gelsolin in muscle and non-muscle cells. J. Muscle. Res. Cell Motil. 14, 275.

    Google Scholar 

  • DRISKA, S. P. & HARTSHORNE, D. J. (1975) The contractile proteins of smooth muscle: properties and composition of a Ca-sensitive actomyosin from chicken gizzard. Arch. Biochem. Biophys. 167, 203–12.

    Google Scholar 

  • EBISAWA, K. & NONOMURA, Y. (1985) Enhancement of actin-activated myosin ATPase by an 84K Mr actin binding protein in vertebrate smooth muscle. J. Biochem. 98, 1127–30.

    Google Scholar 

  • FUJII, T., MACHINO, K., ANDOH, H., SATOH, T. & KONDO, Y. (1990) Calcium-dependent control of caldesmon-actin interaction by S100 protein. J. Biochem. 107, 113–37.

    Google Scholar 

  • GOPALAKRISHNA, R. and ANDERSON, W. B. (1982) Ca2+-induced hydrophobic site on calmodulin: application for purification of calmodulin by phenyl sepharose affinity chromatography. Biochem. Biophys. Res. Commun. 104, 830–6.

    Google Scholar 

  • GRAND, R. S., PERRY, S. V. & WEEKS, R. A. (1979) Properties of troponin-C like proteins (calmodulins) from smooth muscle. Biochem. J. 177, 521–9.

    Google Scholar 

  • GRAZI, E., TROMBETTA, G. & GUIDOBONI, M. (1990) Divergent effects of filamin and tropomyosin on actin filaments bundling. Biochem.Biophys. Res. Commun. 167, 1109–14.

    Google Scholar 

  • HARTWIG, J. H., TYLER, J. & STOSSEL, T. P. (1980) Actin-binding protein promotes the bipolar and perpendicular branching of actin filaments. J. Cell Biol. 87, 841–8.

    Google Scholar 

  • HILL, T., EISENBERG, E. & GREENE, L. E. (1980) Theoretical model for the cooperative equilibrium binding of myosin subfragment-1 to the actin-troponin-tropomyosin complex. Proc. Natl. Acad. Sci. USA 77, 3186–90.

    Google Scholar 

  • ISHIKAWA, R., YAMASHIRO, S. & MATSUMURA, F. (1989a) Differential modulation of actin-severing activity of gelsolin by multiple isoforms of cultured rate cell tropomyosin. Potentiation of protective ability of tropomyosins by 83-kDa nonmuscle caldesmon. J. Biol. Chem. 264, 7490–7.

    Google Scholar 

  • ISHIKAWA, R., YAMASHIRO, S. & MATSUMURA, F. (1989b) Annealing of gelsolin-severed actin fragments by tropomyosin in the presence of Ca2+. Potentiation of the annealing process by caldesmon. J. Biol. Chem. 264, 16764–70.

    Google Scholar 

  • KOFFER, A. & SLEEP, J. (1987) Activation of myosin ATPase by actin isolated from cultured BHK cells and the effect of gelsolin. J. Muscle Res. Cell Motil. 8, 541–7.

    Google Scholar 

  • KOLAKOWSKI, J., MAKUCH, R. & DABROWSKA, R. (1992) Lys-373 of actin is involved in binding to caldesmon. FEBS Lett. 309, 65–7.

    Google Scholar 

  • KWIATKOWSKI, J. D., MEHL, R., IZUMO, S., NADAL-GINARD, B. & YIN, H. L. (1988) Muscle is the major source of plasma gelsolin. J. Biol. Chem. 263, 8239–43.

    Google Scholar 

  • LEVINE, B. A., MOIR, A. J. G., AUDEMARD, E., MORNET, D., PATCHELL, V. B. & PERRY, S. V. (1990) Structural study of gizzard caldesmon and its interaction with actin. Eur. J. Biochem. 193, 687–6.

    Google Scholar 

  • MANI, R. J., MCCUBBIN, W. D. & KAY, C. M. (1992) Calcium-dependent regulation of caldesmon by an 11-kDa smooth muscle calcium binding protein, caltropin. Biochemistry 31, 11896–901.

    Google Scholar 

  • MARSTON, S. B. (1991) Properties of calponin isolated from sheep aorta thin filaments. FEBS Lett. 292, 179–82.

    Google Scholar 

  • MARSTON, S. B. & LEHMAN, W. (1985) Caldesmon is a Ca2+-regulatory component of native smooth-muscle thin filaments. Biochem J. 213, 517–22.

    Google Scholar 

  • MARSTON, S. B. & REDWOOD, C. S. (1991) The molecular anatomy of caldesmon. Biochem. J. 279, 1–16.

    Google Scholar 

  • MARSTON, S. B. & REDWOOD, C. S., (1993) The essential role of tropomyosin in cooperative regulation of smooth muscle thin filament activity by caldesmon. J. Biol. Chem. 268, 12317–20.

    Google Scholar 

  • MARSTON, S. B. & SMITH, C. W. J. (1984) Purification and properties of Ca2+ regulated thin filaments and F-actin from sheep aorta smooth muscle. J. Muscle Res. Cell Motil. 5, 559–75.

    Google Scholar 

  • MARSTON, S. B. & SMITH, C. W. (1985) The thin filaments of smooth muscles. J. Muscle Res. Cell Motil. 6, 669–708.

    Google Scholar 

  • MARSTON, S. B. & TREGEAR, R. T. (1984) Modification of the interactions of myosin with actin and 5′-adenylyl imidodiphosphate by substitution of ethylene glycol for water. Biochem. J. 217, 169–77.

    Google Scholar 

  • MARSTON, S. B., TREVETT, R. M. & WALTERS, M. (1980) Calcium ions regulated thin filaments from vascular smooth muscle. Biochem. J. 185, 355–65.

    Google Scholar 

  • MARSTON, S. B., PINTER, K. and BENNETT, P. M. (1992) Caldesmon binds to smooth muscle myosin and myosin rod and crosslink thick filaments to actin filaments. J. Muscle Res. Cell Motil. 13, 206–18.

    Google Scholar 

  • MEJEAN, C., LEBART, M. C., BOYER, M., ROUSTAN, C. & BENYAMIN, Y. (1992) Localization and identification of actin structures involved in the filamin-actin interaction. Eur. J. Biochem. 209, 555–62.

    Google Scholar 

  • MILLS, J. S., WALSH, M. P., NEMCEK, K. & JOHNSON, J. D. (1988) Biologically active fluorescent derivatives of spinach calmodulin that report calmodulin target protein binding. Biochemistry 27, 991–6.

    Google Scholar 

  • MOODY, C. J., MARSTON, S. B. & SMITH, C. W. (1985) Bundling of actin filaments by aorta caldesmon is not related to its regulatory function. FEBS Lett. 191, 107–12.

    Google Scholar 

  • MOODY, C. J., MARSTON, S. B. & SMITH, C. W. (1985) Bundling of actin filaments by aorta caldesmon is not related to its regulatory function. FEBS Lett. 191, 107–12.

    Google Scholar 

  • NODES, B. R., SHACKELFORD, J. E. & LEBHERZ, H. G. (1987) Synthesis and secretion of serum gelsolin by smooth muscle tissue. J. Biol. Chem. 262, 5422–7.

    Google Scholar 

  • NOMURA, M., YOSHIKAWA, K., TANAKA, T., SOBUE, K. & MARUYAMA, K. (1987) The role of tropomyosin in the interaction of F-actin with caldesmon and actin-binding protein (or filamin). Eur. J. Biochem. 163, 467–71.

    Google Scholar 

  • NOWAK, E., HINSSEN, H. & DABROWSKA, R. (1993) Synergistic and antagonistic modulation of actomyosin ATPase by caldesmon, tropomyosin and gelsolin. J. Muscle Res. Cell Motil. 14, 244.

    Google Scholar 

  • PRITCHARD, K. & MARSTON, S. B. (1989) Ca2+-calmodulin binding to caldesmon and the caldesmon-actin-tropomyosin complex. Biochem. J. 257, 839–43.

    Google Scholar 

  • PRITCHARD, K. & MARSTON, S. B. (1991) Ca2+-dependent regulation of vascular smooth muscle caldesmon by S100 and related smooth muscle proteins. Biochem. J. 277, 819–24.

    Google Scholar 

  • RECKLESS, J., PRITCHARD, K., MARSTON, S. B., FLEETWOOD, G. & TILLING, L. (1993) Caldesmon isoforms changes associated with intimal proliferation in the rabbit carotid artery. Eur. Heart J. 14, 507.

    Google Scholar 

  • SHIRINSKY, V. P., BUSHUEVA, T. L. & FROLOVA, S. I. (1988) Caldesmon-calmodulin interaction: study by the method of protein intrinsic tryptophan fluorescence. Biochem. J. 255, 203–8.

    Google Scholar 

  • SKRIPNIKOVA, E. V. & GUSEV, N. B. (1989) Interaction of smooth muscle caldesmon with S-100 protein. FEBS Lett. 257, 380–2.

    Google Scholar 

  • SMITH, C. W., PRITCHARD, K. & MARSTON, S. B. (1987) The mechanism of Ca2+ regulation of vascular smooth muscle thin filaments by caldesmon and calmodulin. J. Biol. Chem. 262, 116–22.

    Google Scholar 

  • SOBUE, K. & SELLERS, J. R. (1991) Caldesmon, a novel regulatory protein in smooth muscle and non-muscle actomyosin systems. J. Biol. Chem. 266, 12115–18.

    Google Scholar 

  • SOBUE, K., TAKAHASHI, K., TANAKA, T., KANDA, K., ASHINO, N., KAKIUCHI, S. & MARUYAMA, K. (1985) Crosslinking of actin filaments is caused by caldesmon aggregates, but not by its dimers. FEBS Lett. 182, 201–4.

    Google Scholar 

  • SOSINSKI, J., SZPACENKO, A. & DABROWSKA, R. (1984) Potentiation of actomyosin ATPase activity by filamin. FEBS Lett. 178, 311–14.

    Google Scholar 

  • TAGGART, M. J. & MARSTON, S. B. (1988) The effects of vascular smooth muscle caldesmon on force production by “desensitised” skeletal muscle fibres. FEBS Lett. 242, 171–4.

    Google Scholar 

  • TAKAHASHI, K., HIWADA, K. & KOKUBU, T. (1986) Isolation and characterization of 34000-dalton calmodulin- and F-actin-binding protein from chicken gizzard smooth muscle. Biochem. Biophys. Res. Commun. 141, 20–6.

    Google Scholar 

  • TAUSSKY, H. H. & SCHORR, E. (1953) A microscopic method for the determination of inorganic phosphorus. J. Biol Chem. 202, 675–85.

    Google Scholar 

  • TOWBIN, H., STAEHELIN, T. & GORDON, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA. 76, 4350–4.

    Google Scholar 

  • WALSH, M. P. (1991) Calcium dependent mechanisms of regulation of smooth muscle contraction. Biochem. Cell Biol. 69, 771–800.

    Google Scholar 

  • WANG, K. (1977) Filamin, a new high molecular weight protein found in smooth muscle and non-muscle cells. Purification and properties of chicken gizzard filamin. Biochemistry 16, 1857–65.

    Google Scholar 

  • WANG, K. & SINGER, S. J. (1977) Interaction of filamin with F-actin in solution. Proc. Natl. Acad. Sci. USA 74, 2021–5.

    Google Scholar 

  • WAY, M., GOOCH, J., POPE, B. & WEEDS, A. G. (1989) Expression of human plasma gelsolin in Escherichia coli and dissection of actin binding sites by segmental deletion mutagenesis. J. Cell Biol. 109, 593–605.

    Google Scholar 

  • WEEDS, A. G. & TAYLOR, R. S. (1975) Separation of subfragment-1 isozymes from rabbit muscle myosin. Nature 257, 54–6.

    Google Scholar 

  • WINDER, S. J., SUTHERLAND, C. & WALSH, M. P. (1992) A comparison of the effect of calponin on smooth and skeletal muscle actomyosin systems in the presence and absence of caldesmon. Biochem. J. 288, 733–9.

    Google Scholar 

  • WINDER, S. J. & WALSH, M. P. (1990) Smooth muscle calponin. Inhibition of actomyosin MgATPase and regulation by phosphorylation. J. Biol. Chem. 265, 10148–55.

    Google Scholar 

  • ZEECE, M. G., ROBSON, R. M. & BECHTEL, P. J. (1979) Interaction of a-actinin, filamin and tropomyosin with F-actin Biochim. Biophys. Acta 581, 365–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gusev, N.B., Pritchard, K., Hodgkinson, J.L. et al. Filamin and gelsolin influence Ca2+-sensitivity of smooth muscle thin filaments. J Muscle Res Cell Motil 15, 672–681 (1994). https://doi.org/10.1007/BF00121074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00121074

Keywords

Navigation