Skip to main content

Advertisement

Log in

Phosphoinositide substrates of myotubularin affect voltage-activated Ca2+ release in skeletal muscle

  • Muscle physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Skeletal muscle excitation–contraction (E–C) coupling is altered in several models of phosphatidylinositol phosphate (PtdInsP) phosphatase deficiency and ryanodine receptor activity measured in vitro was reported to be affected by certain PtdInsPs, thus prompting investigation of the physiological role of PtdInsPs in E–C coupling. We measured intracellular Ca2+ transients in voltage-clamped mouse muscle fibres microinjected with a solution containing a PtdInsP substrate (PtdIns(3,5)P 2 or PtdIns(3)P) or product (PtdIns(5)P or PtdIns) of the myotubularin phosphatase MTM1. No significant change was observed in the presence of either PtdIns(5)P or PtdIns but peak SR Ca2+ release was depressed by ~30% and 50% in fibres injected with PtdIns(3,5)P 2 and PtdIns(3)P, respectively, with no concurrent alteration in the membrane current signals associated with the DHPR function as well as in the voltage dependence of Ca2+ release inactivation. In permeabilized muscle fibres, the frequency of spontaneous Ca2+ release events was depressed in the presence of the three tested phosphorylated forms of PtdInsP with PtdIns(3,5)P 2 being the most effective, leading to an almost complete disappearance of Ca2+ release events. Results support the possibility that pathological accumulation of MTM1 substrates may acutely depress ryanodine receptor-mediated Ca2+ release. Overexpression of a mCherry-tagged form of MTM1 in muscle fibres revealed a striated pattern consistent with the triadic area. Ca2+ release remained although unaffected by MTM1 overexpression and was also unaffected by the PtdIns-3-kinase inhibitor LY2940002, suggesting that the 3-phosphorylated PtdIns lipids active on voltage-activated Ca2+ release are inherently maintained at a low level, inefficient on Ca2+ release in normal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Al-Qusairi L, Weiss N, Toussaint A, Berbey C, Messaddeq N, Kretz C, Sanoudou D, Beggs AH, Allard B, Mandel JL, Laporte J, Jacquemond V, Buj-Bello A (2009) T-tubule disorganization and defective excitation-contraction coupling in muscle fibres lacking myotubularin lipid phosphatase. Proc Natl Acad Sci U S A 106:18763–18768

    Article  PubMed Central  PubMed  Google Scholar 

  2. Amoasii L, Hnia K, Chicanne G, Brech A, Cowling BS, Müller MM, Schwab Y, Koebel P, Ferry A, Payrastre B, Laporte J (2013) Myotubularin and PtdIns3P remodel the sarcoplasmic reticulum in muscle in vivo. J Cell Sci 126:1806–1819

    Article  PubMed  CAS  Google Scholar 

  3. Bolis A, Zordan P, Coviello S, Bolino A (2007) Myotubularin-related (MTMR) phospholipid phosphatase proteins in the peripheral nervous system. Mol Neurobiol 35:308–316

    Article  PubMed  CAS  Google Scholar 

  4. Cao C, Backer JM, Laporte J, Bedrick EJ, Wandinger-Ness A (2008) Sequential actions of myotubularin lipid phosphatases regulate endosomal PI(3)P and growth factor receptor trafficking. Mol Biol Cell 19:3334–3346

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Cheng H, Lederer WJ, Cannell MB (2003) Calcium sparks: elementary events underlying excitation–contraction coupling in heart muscle. Science 262:740–744

    Article  Google Scholar 

  6. Chu A, Stefani E (1991) Phosphatidylinositol 4,5-bisphosphate-induced Ca2+ release from skeletal muscle sarcoplasmic reticulum terminal cisternal membranes. Ca2+ flux and single channel studies. J Biol Chem 266:7699–7705

    PubMed  CAS  Google Scholar 

  7. Clark J, Anderson KE, Juvin V, Smith TS, Karpe F, Wakelam MJ, Stephens LR, Hawkins PT (2011) Quantification of PtdInsP3 molecular species in cells and tissues by mass spectrometry. Nat Methods 8:267–272

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Collet C, Csernoch L, Jacquemond V (2003) Intramembrane charge movement and L-type calcium current in skeletal muscle fibres isolated from control and mdx mice. Biophys J 84:251–265

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Collet C, Pouvreau S, Csernoch L, Allard B, Jacquemond V (2004) Calcium signaling in isolated skeletal muscle fibres investigated under "Silicone Voltage-Clamp" conditions. Cell Biochem Biophys 40:225–236

    Article  PubMed  CAS  Google Scholar 

  10. Csernoch L, Bernengo JC, Szentesi P, Jacquemond V (1998) Measurements of intracellular Mg2+ concentration in mouse skeletal muscle fibres with the fluorescent indicator mag-indo-1. Biophys J 75:957–967

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Csernoch L, Pouvreau S, Ronjat M, Jacquemond V (2008) Voltage-activated elementary calcium release events in isolated mouse skeletal muscle fibres. J Membr Biol 226:43–55

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657

    Article  PubMed  CAS  Google Scholar 

  13. Dowling JJ, Low SE, Busta AS, Feldman EL (2010) Zebrafish MTMR14 is required for excitation–contraction coupling, developmental motor function and the regulation of autophagy. Hum Mol Genet 19:2668–2681

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Dowling JJ, Vreede AP, Low SE, Gibbs EM, Kuwada JY, Bonnemann CG, Feldman EL (2009) Loss of myotubularin function results in T-tubule disorganization in zebrafish and human myotubular myopathy. PLoS Genet 5:e1000372. doi:10.1371/journal.pgen.1000372

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Eisenberg BR (1983) Quantitative ultrastructure of mammalian skeletal muscle. In: Peachey LD, Adrian RH, Geiger SR (eds) Handbook of physiology sect 10: skeletal muscle, 3rd edn. Williams & Wilkins, Baltimore, MD, pp 73–112

    Google Scholar 

  16. Hannon JD, Lee NK, Yandong C, Blinks JR (1992) Inositol trisphosphate (InsP3) causes contraction in skeletal muscle only under artificial conditions: evidence that Ca2+ release can result from depolarization of T-tubules. J Muscle Res Cell Motil 13:447–456

    Article  PubMed  CAS  Google Scholar 

  17. Harkins AB, Kurebayashi N, Baylor SM (1993) Resting myoplasmic free calcium in frog skeletal muscle fibres estimated with fluo-3. Biophys J 65:865–881

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Jacquemond V (1997) Indo-1 fluorescence signals elicited by membrane depolarization in enzymatically isolated mouse skeletal muscle fibres. Biophys J 73:920–928

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Kirsch WG, Uttenweiler D, Fink RH (2001) Spark- and ember-like elementary Ca2+ release events in skinned fibres of adult mammalian skeletal muscle. J Physiol 537:379–389

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Kobayashi M, Muroyama A, Ohizumi Y (1989) Phosphatidylinositol 4,5-bisphosphate enhances calcium release from sarcoplasmic reticulum of skeletal muscle. Biochem Biophys Res Commun 163:1487–1491

    Article  PubMed  CAS  Google Scholar 

  21. Kong D, Dan S, Yamazaki K, Yamori T (2010) Inhibition profiles of phosphatidylinositol 3-kinase inhibitors against PI3K superfamily and human cancer cell line panel JFCR39. Eur J Cancer 46:1111–1121

    Article  PubMed  CAS  Google Scholar 

  22. Lanner JT, Georgiou DK, Joshi AD, Hamilton SL (2010) Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol 2:a003996

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Laporte J, Hu LJ, Kretz C, Mandel JL, Kioschis P, Coy JF, Klauck SM, Poustka A, Dahl N (1996) A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet 13:175–182

    Article  PubMed  CAS  Google Scholar 

  24. Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Bio 9:99–111

    Article  CAS  Google Scholar 

  25. Logothetis DE, Petrou VI, Adney SK, Mahajan R (2010) Channelopathies linked to plasma membrane phosphoinositides. Pflugers Arch 460:321–341

    Article  PubMed  CAS  Google Scholar 

  26. Lukács B, Sztretye M, Almássy J, Sárközi S, Dienes B, Mabrouk K, Simut C, Szabó L, Szentesi P, De Waard M, Ronjat M, Jóna I, Csernoch L (2008) Charged surface area of maurocalcine determines its interaction with the skeletal ryanodine receptor. Biophys J 95:3497–3509

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Monnier N, Ferreiro A, Marty I, Labarre-Vila A, Mezin P, Lunardi J (2003) A homozygous splicing mutation causing a depletion of skeletal muscle RYR1 is associated with multi-minicore disease congenital myopathy with ophthalmoplegia. Hum Mol Genet 12:1171–1178

    Article  PubMed  CAS  Google Scholar 

  28. Ogawa Y, Harafuji H (1989) Ca-release by phosphoinositides from sarcoplasmic reticulum of frog skeletal muscle. J Biochem 106:864–867

    PubMed  CAS  Google Scholar 

  29. Ohizumi Y, Hirata Y, Suzuki A, Kobayashi M (1999) Two novel types of calcium release from skeletal sarcoplasmic reticulum by phosphatidylinositol 4,5-biphosphate. Can J Physiol Pharmacol 77:276–285

    Article  PubMed  CAS  Google Scholar 

  30. Pierson CR, Tomczak K, Agrawal P, Moghadaszadeh B, Beggs AH (2005) X-linked myotubular and centronuclear myopathies. J Neuropathol Exp Neurol 64:555–564

    Article  PubMed  CAS  Google Scholar 

  31. Pouvreau S, Csernoch L, Allard B, Sabatier JM, De Waard M, Ronjat M, Jacquemond V (2006) Transient loss of voltage control of Ca2+ release in the presence of maurocalcine in skeletal muscle. Biophys J 91:2206–2215

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Pouvreau S, Jacquemond V (2005) Nitric oxide synthase inhibition affects sarcoplasmic reticulum Ca2+ release in skeletal muscle fibres from mouse. J Physiol 567:815–728

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Romero-Suarez S, Shen J, Brotto L, Hall T, Mo C, Valdivia HH, Andresen J, Wacker M, Nosek TM, Qu CK, Brotto M (2010) Muscle-specific inositide phosphatase (MIP/MTMR14) is reduced with age and its loss accelerates skeletal muscle aging process by altering calcium homeostasis. Aging 2:504–513

    PubMed Central  PubMed  CAS  Google Scholar 

  34. Shen J, Yu WM, Brotto M, Scherman JA, Guo C, Stoddard C, Nosek TM, Valdivia HH, Qu CK (2009) Deficiency of MIP/MTMR14 phosphatase induces a muscle disorder by disrupting Ca2+ homeostasis. Nat Cell Biol 11:769–776

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Suh BC, Hille B (2008) PIP2 is a necessary cofactor for ion channel function: how and why? Annu Rev Biophys 37:175–195

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Szabó LZ, Vincze J, Csernoch L, Szentesi P (2010) Improved spark and ember detection using stationary wavelet transforms. J Theor Biol 264:1279–1292

    Article  PubMed  CAS  Google Scholar 

  37. Zhou H, Jungbluth H, Sewry CA, Feng L, Bertini E, Bushby K, Straub V, Roper H, Rose MR, Brockington M, Kinali M, Manzur A, Robb S, Appleton R, Messina S, D'Amico A, Quinlivan R, Swash M, Müller CR, Brown S, Treves S, Muntoni F (2007) Molecular mechanisms and phenotypic variation in RYR1-related congenital myopathies. Brain 130:2024–2036

    Article  PubMed  Google Scholar 

  38. Zhou H, Lillis S, Loy RE, Ghassemi F, Rose MR, Norwood F, Mills K, Al-Sarraj S, Lane RJ, Feng L, Matthews E, Sewry CA, Abbs S, Buk S, Hanna M, Treves S, Dirksen RT, Meissner G, Muntoni F, Jungbluth H (2010) Multi-minicore disease and atypical periodic paralysis associated with novel mutations in the skeletal muscle ryanodine receptor (RYR1) gene. Neuromuscul Disord 20:166–173

    Article  PubMed Central  PubMed  Google Scholar 

  39. Zhou H, Yamaguchi N, Xu L, Wang Y, Sewry C, Jungbluth H, Zorzato F, Bertini E, Muntoni F, Meissner G, Treves S (2006) Characterization of recessive RYR1 mutations in core myopathies. Hum Mol Genet 15:2791–2803

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Centre National de la Recherche Scientifique (CNRS), Université Lyon 1, Association Française contre les Myopathies (AFM), Hubert Curien Partnership Balaton (TeT_10-1-2011-0723) and OTKA K107765. E.G.R. was a recipient of a fellowship from the Spanish Ministry of Education and Science (MEC, José Castillejo Program). We thank Bruno Allard for critical comments on the manuscript and helpful discussion.

Ethical standards

All experiments comply with the current laws of the two countries (France and Hungary) in which they were performed.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Jacquemond.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 544 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

González Rodríguez, E., Lefebvre, R., Bodnár, D. et al. Phosphoinositide substrates of myotubularin affect voltage-activated Ca2+ release in skeletal muscle. Pflugers Arch - Eur J Physiol 466, 973–985 (2014). https://doi.org/10.1007/s00424-013-1346-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1346-5

Keywords

Navigation