Skip to main content
Log in

Genetic evidence for functional role of ryanodine receptor 1 in pulmonary artery smooth muscle cells

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Ryanodine receptor 1 (RyR1) is well-known to be expressed in systemic and pulmonary vascular smooth muscle cells (SMCs); however, its functional roles remain largely unknown. In the present study, we attempted to determine the potential importance of RyR1 in membrane depolarization-, neurotransmitter-, and hypoxia-induced Ca2+ release and contraction in pulmonary artery SMCs (PASMCs) using RyR1 homozygous and heterozygous gene deletion (RyR1−/− and RyR1+/−) mice. Our results indicate that spontaneous local Ca2+ release and caffeine-induced global Ca2+ release are significantly reduced in embryonic RyR1−/− and adult RyR+/− cells. An increase in [Ca2+]i following membrane depolarization with high K+ is markedly attenuated in RyR1−/− and RyR1+/− PASMCs in normal Ca2+ or Ca2+-free extracellular solution. Similarly, muscle contraction evoked by membrane depolarization is reduced in RyR1+/− pulmonary arteries in the presence or absence of extracellular Ca2+. Neurotransmitter receptor agonists and inositol 1,4,5-triphosphate elicit a much smaller increase in [Ca2+]i in both RyR1−/− and RyR1+/− cells. We have also found that neurotransmitter-evoked muscle contraction is significantly inhibited in RyR1+/− pulmonary arteries. Hypoxia-induced increase in [Ca2+]i and contraction are largely blocked in RyR1−/− and/or RyR1+/− PASMCs. Collectively, our findings provide genetic evidence for the functional importance of RyR1 in spontaneous local Ca2+ release, and membrane depolarization-, neurotransmitter-, as well as hypoxia-induced global Ca2+ release and attendant contraction in PASMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, Lederer WJ (1995) Relaxation of arterial smooth muscle by calcium sparks. Science 270:633–637

    Article  PubMed  CAS  Google Scholar 

  2. Lohn M, Jessner W, Furstenau M, Wellner M, Sorrentino V, Haller H, Luft FC, Gollasch M (2001) Regulation of calcium sparks and spontaneous transient outward currents by RyR3 in arterial vascular smooth muscle cells. Circ Res 89:1051–1057

    Article  PubMed  CAS  Google Scholar 

  3. Coussin F, Macrez N, Morel JL, Mironneau J (2000) Requirement of ryanodine receptor subtypes 1 and 2 for Ca2+-induced Ca2+ release in vascular myocytes. J Biol Chem 275:9596–9603

    Article  PubMed  CAS  Google Scholar 

  4. Zheng YM, Wang QS, Rathore R, Zhang WH, Mazurkiewicz JE, Sorrentino V, Singer HA, Kotlikoff MI, Wang YX (2005) Type-3 ryanodine receptors mediate hypoxia-, but not neurotransmitter-induced calcium release and contraction in pulmonary artery smooth muscle cells. J Gen Physiol 125:427–440

    Article  PubMed  CAS  Google Scholar 

  5. Yang XR, Lin MJ, Yip KP, Jeyakumar LH, Fleischer S, Leung GP, Sham JS (2005) Multiple ryanodine receptor subtypes and heterogeneous ryanodine receptor-gated Ca2+ stores in pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 289:L338–L348

    Article  PubMed  CAS  Google Scholar 

  6. Zheng YM, Wang QS, Liu QH, Rathore R, Yadav V, Wang YX (2008) Heterogeneous gene expression and functional activity of ryanodine receptors in resistance and conduit pulmonary as well as mesenteric artery smooth muscle cells. J Vasc Res 45:469–479

    Article  PubMed  CAS  Google Scholar 

  7. Janiak R, Wilson SM, Montague S, Hume JR (2001) Heterogeneity of calcium stores and elementary release events in canine pulmonary arterial smooth muscle cells. Am J Physiol Cell Physiol 280:C22–C33

    PubMed  CAS  Google Scholar 

  8. Wang YX, Zheng YM, Abdullaev II, Kotlikoff MI (2003) Metabolic inhibition with cyanide induces intracellular calcium release in pulmonary artery myocytes and Xenopus oocytes. Am J Physiol Cell Physiol 284:C378–C388

    PubMed  CAS  Google Scholar 

  9. Jabr RI, Toland H, Gelband CH, Wang XX, Hume JR (1997) Prominent role of intracellular Ca2+ release in hypoxic vasoconstriction of canine pulmonary artery. Br J Pharmacol 122:21–30

    Article  PubMed  CAS  Google Scholar 

  10. Zhang WM, Yip KP, Lin MJ, Shimoda LA, Li WH, Sham JS (2003) ET-1 activates Ca2+ sparks in PASMC: local Ca2+ signaling between inositol trisphosphate and ryanodine receptors. Am J Physiol Lung Cell Mol Physiol 285:L680–L690

    PubMed  CAS  Google Scholar 

  11. Takeshima H, Iino M, Takekura H, Nishi M, Kuno J, Minowa O, Takano H, Noda T (1994) Excitation-contraction uncoupling and muscular degeneration in mice lacking functional skeletal muscle ryanodine-receptor gene. Nature 369:556–559

    Article  PubMed  CAS  Google Scholar 

  12. Liu QH, Zheng YM, Wang YX (2007) Two distinct signaling pathways for regulation of spontaneous local Ca2+ release by phospholipase C in airway smooth muscle cells. Pflugers Arch 453:531–541

    Article  PubMed  CAS  Google Scholar 

  13. Zheng YM, Mei QB, Wang QS, Abdullaev I, Lai FA, Xin HB, Kotlikoff MI, Wang YX (2004) Role of FKBP12.6 in hypoxia- and norepinephrine-induced Ca2+ release and contraction in pulmonary artery myocytes. Cell Calcium 35:345–355

    Article  PubMed  CAS  Google Scholar 

  14. Remillard CV, Zhang WM, Shimoda LA, Sham JS (2002) Physiological properties and functions of Ca2+ sparks in rat intrapulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 283:L433–L444

    PubMed  CAS  Google Scholar 

  15. Fritz N, Morel JL, Jeyakumar LH, Fleischer S, Allen PD, Mironneau J, Macrez N (2007) RyR1-specific requirement for depolarization-induced Ca2+ sparks in urinary bladder smooth muscle. J Cell Sci 120:3784–3791

    Article  PubMed  CAS  Google Scholar 

  16. Ji G, Feldman ME, Greene KS, Sorrentino V, Xin HB, Kotlikoff MI (2004) RYR2 proteins contribute to the formation of Ca2+ sparks in smooth muscle. J Gen Physiol 123:377–386

    Article  PubMed  CAS  Google Scholar 

  17. Tang WX, Chen YF, Zou AP, Campbell WB, Li PL (2002) Role of FKBP12.6 in cADPR-induced activation of reconstituted ryanodine receptors from arterial smooth muscle. Am J Physiol Heart Circ Physiol 282:H1304–H1310

    PubMed  CAS  Google Scholar 

  18. Hotta S, Morimura K, Ohya S, Muraki K, Takeshima H, Imaizumi Y (2007) Ryanodine receptor type 2 deficiency changes excitation-contraction coupling and membrane potential in urinary bladder smooth muscle. J Physiol 582:489–506

    Article  PubMed  CAS  Google Scholar 

  19. Collier ML, Ji G, Wang YX, Kotlikoff MI (2000) Calcium-induced calcium release in smooth muscle: loose coupling between the action potential and calcium release. J Gen Physiol 115:653–662

    Article  PubMed  CAS  Google Scholar 

  20. Ng LC, Wilson SM, McAllister CE, Hume JR (2007) Role of InsP3 and ryanodine receptors in the activation of capacitative Ca2+ entry by store depletion or hypoxia in canine pulmonary arterial smooth muscle cells. Br J Pharmacol 152:101–111

    Article  PubMed  CAS  Google Scholar 

  21. Bayguinov O, Hagen B, Bonev AD, Nelson MT, Sanders KM (2000) Intracellular calcium events activated by ATP in murine colonic myocytes. Am J Physiol Cell Physiol 279:C126–C135

    PubMed  CAS  Google Scholar 

  22. Du W, Stiber JA, Paul RB, Gerhard M, Eu JP (2005) Ryanodine receptors in muscarinic receptor-mediated bronchoconstriction. J Biol Chem 280:26287–26294

    Article  PubMed  CAS  Google Scholar 

  23. Wang YX, Zheng YM, Mei QB, Wang QS, Collier ML, Fleischer S, Xin HB, Kotlikoff MI (2004) FKBP12.6 and cADPR regulation of Ca2+ release in smooth muscle cells. Am J Physiol Cell Physiol 286:C538–C546

    Article  PubMed  CAS  Google Scholar 

  24. Guibert C, Pacaud P, Loirand G, Marthan R, Savineau JP (1996) Effect of extracellular ATP on cytosolic Ca2+ concentration in rat pulmonary artery myocytes. Am J Physiol 271:L450–L458

    PubMed  CAS  Google Scholar 

  25. Hartley SA, Kozlowski RZ (1997) Electrophysiological consequences of purinergic receptor stimulation in isolated rat pulmonary arterial myocytes. Circ Res 80:170–178

    PubMed  CAS  Google Scholar 

  26. Burnstock G (2006) Purinergic signalling. Br J Pharmacol 147(Suppl 1):S172–S181

    Article  PubMed  CAS  Google Scholar 

  27. Vadula MS, Kleinman JG, Madden JA (1993) Effect of hypoxia and norepinephrine on cytoplasmic free Ca2+ in pulmonary and cerebral arterial myocytes. Am J Physiol 265:L591–L597

    PubMed  CAS  Google Scholar 

  28. Dipp M, Nye PC, Evans AM (2001) Hypoxic release of calcium from the sarcoplasmic reticulum of pulmonary artery smooth muscle. Am J Physiol Lung Cell Mol Physiol 281:L318–L325

    PubMed  CAS  Google Scholar 

  29. Salvaterra CG, Goldman WF (1993) Acute hypoxia increases cytosolic calcium in cultured pulmonary arterial myocytes. Am J Physiol 264:L323–L328

    PubMed  CAS  Google Scholar 

  30. Morio Y, McMurtry IF (2002) Ca2+ release from ryanodine-sensitive store contributes to mechanism of hypoxic vasoconstriction in rat lungs. J Appl Physiol 92:527–534

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Krista Wadsworth for the technical assistance. This work was supported by the AHA Scientist Development Grant 0630236N (Y.-M.Z.) and Established Investigator Award 0340160N (Y.-X.W.), as well as NIH R01 HL64043 (Y.-X.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Xiao Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, XQ., Zheng, YM., Rathore, R. et al. Genetic evidence for functional role of ryanodine receptor 1 in pulmonary artery smooth muscle cells. Pflugers Arch - Eur J Physiol 457, 771–783 (2009). https://doi.org/10.1007/s00424-008-0556-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0556-8

Keywords

Navigation