Skip to main content
Log in

Two distinct signaling pathways for regulation of spontaneous local Ca2+ release by phospholipase C in airway smooth muscle cells

  • Smooth Muscle
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Spontaneous local Ca2+ release events have been observed in airway smooth muscle cells (SMCs), but the underlying mechanisms are largely unknown. Considering that each type of SMCs may use its own mechanisms to regulate local Ca2+ release events, we sought to investigate the signaling pathway for spontaneous local Ca2+ release events in freshly isolated mouse airway SMCs using a laser scanning confocal microscope. Application of ryanodine to block ryanodine receptors (RyRs) abolished spontaneous local Ca2+ release events, indicating that these events are RyR-mediated Ca2+ sparks. Inhibition of inositol 1,4,5-triphosphate receptors (IP3Rs) by 2-aminoethoxydiphenyl-borate (2-APB) or xestospongin-C significantly blocked the activity of Ca2+ sparks. Under patch clamp conditions, dialysis of IP3 to activate IP3Rs increased the activity of local Ca2+ events in control cells but had no effect in ryanodine-pretreated cells. The RyR agonist caffeine augmented the frequency of Ca2+ sparks in cells pretreated with and without 2-APB or xestospongin-C. The specific phospholipase C (PLC) blocker U73122 decreased the activity of Ca2+ sparks and prevented xestospongin-C from producing the inhibitory effect. The protein kinase C (PKC) activator 1-oleoyl-2-acetyl-glycerol or phorbol-12-myristate-13-acetate inhibited Ca2+ sparks, whereas the PKC inhibitor chelerythrine, PKCɛ inhibitory peptide, or PKCɛ gene knockout produced an opposite effect. Collectively, our data suggest that the basal activation of PLC regulates the activity of RyR-mediated, spontaneous Ca2+ sparks in airway SMCs through two distinct signaling pathways: a positive IP3-IP3R pathway and a negative diacylglycerol–PKCɛ pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Imaizumi Y, Muraki K, Takeda M, Watanabe M (1989) Measurement and simulation of noninactivating Ca current in smooth muscle cells. Am J Physiol Cell Physiol 256:C880–C885

    CAS  Google Scholar 

  2. Ganitkevich VY, Isenberg G (1992) Contribution of Ca2+-induced Ca2+ release to the [Ca2+]i transients in myocytes from guinea-pig urinary bladder. J Physiol 458:119–137

    PubMed  CAS  Google Scholar 

  3. Collier ML, Ji G, Wang Y, Kotlikoff MI (2000) Calcium-induced calcium release in smooth muscle: loose coupling between the action potential and calcium release. J Gen Physiol 115:653–662

    Article  PubMed  CAS  Google Scholar 

  4. Morimura K, Ohi Y, Yamamura H, Ohya S, Muraki K, Imaizumi Y (2006) Two-step Ca2+ intracellular release underlies excitation–contraction coupling in mouse urinary bladder myocytes. Am J Physiol Cell Physiol 290:C388–C403

    Article  PubMed  CAS  Google Scholar 

  5. Fleischmann BK, Wang YX, Pring M, Kotlikoff MI (1996) Voltage-dependent calcium currents and cytosolic calcium in equine airway myocytes. J Physiol 492:347–358

    PubMed  Google Scholar 

  6. Guerrero A, Singer JJ, Fay FS (1994) Simultaneous measurement of Ca2+ release and influx into smooth muscle cells in response to caffeine. A novel approach for calculating the fraction of current carried by calcium. J Gen Physiol 104:395–422

    Article  PubMed  CAS  Google Scholar 

  7. Kim SJ, Ahn SC, Kim JK, Kim YC, So I, Kim KW (1997) Changes in intracellular Ca2+ concentration induced by l-type Ca2+ channel current in guinea pig gastric myocytes. Am J Physiol Cell Physiol 273:C1947–C1956

    CAS  Google Scholar 

  8. Kamishima T, McCarron JG (1996) Depolarization-evoked increases in cytosolic calcium concentration in isolated smooth muscle cells of rat portal vein. J Physiol 492:61–74

    PubMed  CAS  Google Scholar 

  9. Kamishima T, Davies NW, Standen NB (2000) Mechanisms that regulate [Ca2+]i following depolarization in rat systemic arterial smooth muscle cells. J Physiol 522:285–295

    Article  PubMed  CAS  Google Scholar 

  10. Bayguinov O, Hagen B, Bonev AD, Nelson MT, Sanders KM (2000) Intracellular calcium events activated by ATP in murine colonic myocytes. Am J Physiol Cell Physiol 279:C126–C135

    PubMed  CAS  Google Scholar 

  11. Wang YX, Zheng YM, Mei QB, Wang QS, Collier ML, Fleischer S, Xin HB, Kotlikoff MI (2004) FKBP12.6 and cADPR regulation of Ca2+ release in smooth muscle cells. Am J Physiol Cell Physiol 286:C538–C546

    Article  PubMed  CAS  Google Scholar 

  12. Boittin FX, Macrez N, Halet G, Mironneau J (1999) Norepinephrine-induced Ca2+ waves depend on InsP3 and ryanodine receptor activation in vascular myocytes. Am J Physiol Cell Physiol 277:C139–C151

    CAS  Google Scholar 

  13. Du W, Stiber JA, Paul RB, Gerhard M, Eu JP (2005) Ryanodine receptors in muscarinic receptor-mediated bronchoconstriction. J Biol Chem 280:26287–26294

    Article  PubMed  CAS  Google Scholar 

  14. Zhang WM, Yip KP, Lin MJ, Shimoda LA, Li WH, Sham JS (2003) ET-1 activates Ca2+ sparks in PASMC: local Ca2+ signaling between inositol trisphosphate and ryanodine receptors. Am J Physiol Lung Cell Mol Physiol 285:L680–L690

    PubMed  CAS  Google Scholar 

  15. Amedee T, Large WA, Wang Q (1990) Characteristics of chloride currents activated by noradrenaline in rabbit ear artery cells. J Physiol 428:501–516

    PubMed  CAS  Google Scholar 

  16. Leijten PA, van Breemen C (1984) The effects of caffeine on the noradrenaline-sensitive calcium store in rabbit aorta. J Physiol 357:327–339

    PubMed  CAS  Google Scholar 

  17. Pacaud P, Loirand G (1995) Release of Ca2+ by noradrenaline and ATP from the same Ca2+ store sensitive to both InsP3 and Ca2+ in rat portal vein myocytes. J Physiol 484:549–555

    PubMed  CAS  Google Scholar 

  18. Janiak R, Wilson SM, Montague S, Hume JR (2001) Heterogeneity of calcium stores and elementary release events in canine pulmonary arterial smooth muscle cells. Am J Physiol Cell Physiol 280:C22–C33

    PubMed  CAS  Google Scholar 

  19. Wang YX, Zheng YM, Abdullaev II, Kotlikoff MI (2003) Metabolic inhibition with cyanide induces intracellular calcium release in pulmonary artery myocytes and Xenopus oocytes. Am J Physiol Cell Physiol 284:C378–C388

    PubMed  CAS  Google Scholar 

  20. Jabr RI, Toland H, Gelband CH, Wang XX, Hume JR (1997) Prominent role of intracellular Ca2+ release in hypoxic vasoconstriction of canine pulmonary artery. Br J Pharmacol 122:21–30

    Article  PubMed  CAS  Google Scholar 

  21. Baro I, Eisner DA (1995) Factors controlling changes in intracellular Ca2+ concentration produced by noradrenaline in rat mesenteric artery smooth muscle cells. J Physiol 482:247–258

    PubMed  CAS  Google Scholar 

  22. Komori S, Bolton TB (1991) Calcium release induced by inositol 1,4,5-trisphosphate in single rabbit intestinal smooth muscle cells. J Physiol 433:495–517

    PubMed  CAS  Google Scholar 

  23. Komori S, Itagaki M, Unno T, Ohashi H (1995) Caffeine and carbachol act on common Ca2+ stores to release Ca2+ in guinea-pig ileal smooth muscle. Eur J Pharmacol 277:173–180

    Article  PubMed  CAS  Google Scholar 

  24. Zholos AV, Komori S, Ohashi H, Bolton TB (1994) Ca2+ inhibition of inositol trisphosphate-induced Ca2+ release in single smooth muscle cells of guinea-pig small intestine. J Physiol 481:97–109

    PubMed  CAS  Google Scholar 

  25. Flynn ER, Bradley KN, Muir TC, McCarron JG (2001) Functionally separate intracellular Ca2+ stores in smooth muscle. J Biol Chem 276:36411–36418

    Article  PubMed  CAS  Google Scholar 

  26. Zheng YM, Wang QS, Rathore R, Zhang WH, Mazurkiewicz JE, Sorrentino V, Singer HA, Kotlikoff MI, Wang YX (2005) Type-3 ryanodine receptors mediate hypoxia-, but not neurotransmitter-induced calcium release and contraction in pulmonary artery smooth muscle cells. J Gen Physiol 125:427–440

    Article  PubMed  CAS  Google Scholar 

  27. Wibo M, Godfraind T (1994) Comparative localization of inositol 1,4,5-trisphosphate and ryanodine receptors in intestinal smooth muscle: an analytical subfractionation study. Biochem J 297:415–423

    PubMed  CAS  Google Scholar 

  28. MacMillan D, Chalmers S, Muir TC, McCarron JG (2005) IP3-mediated Ca2+ increases do not involve the ryanodine receptor, but ryanodine receptor antagonists reduce IP3-mediated Ca2+ increases in guinea-pig colonic smooth muscle cells. J Physiol 569:533–544

    Article  PubMed  CAS  Google Scholar 

  29. Golovina VA, Blaustein MP (1997) Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum. Science 275:1643–1648

    Article  PubMed  CAS  Google Scholar 

  30. Burdyga TV, Taggart MJ, Crichton C, Smith GL, Wray S (1998) The mechanism of Ca2+ release from the SR of permeabilised guinea-pig and rat ureteric smooth muscle. Biochim Biophys Acta 1402:109–114

    Article  PubMed  CAS  Google Scholar 

  31. Boittin FX, Coussin F, Morel JL, Halet G, Macrez N, Mironneau J (2000) Ca2+ signals mediated by Ins(1,4,5)P3-gated channels in rat ureteric myocytes. Biochem J 349:323–332

    Article  PubMed  CAS  Google Scholar 

  32. Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, Lederer WJ (1995) Relaxation of arterial smooth muscle by calcium sparks. Science 270:633–637

    Article  PubMed  CAS  Google Scholar 

  33. Brenner R, Perez GJ, Bonev AD, Eckman DM, Kosek JC, Wiler SW, Patterson AJ, Nelson MT, Aldrich RW (2000) Vasoregulation by the beta1 subunit of the calcium-activated potassium channel. Nature 407:870–876

    Article  PubMed  CAS  Google Scholar 

  34. White C, McGeown JG (2003) Inositol 1,4,5-trisphosphate receptors modulate Ca2+ sparks and Ca2+ store content in vas deferens myocytes. Am J Physiol Cell Physiol 285:C195–C204

    PubMed  CAS  Google Scholar 

  35. Remillard CV, Zhang WM, Shimoda LA, Sham JS (2002) Physiological properties and functions of Ca2+ sparks in rat intrapulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 283:L433–L444

    PubMed  CAS  Google Scholar 

  36. Sieck GC, Kannan MS, Prakash YS (1997) Heterogeneity in dynamic regulation of intracellular calcium in airway smooth muscle cells. Can J Physiol Pharmacol 75:878–888

    Article  PubMed  CAS  Google Scholar 

  37. ZhuGe R, Sims SM, Tuft RA, Fogarty KE, Walsh Jr JV (1998) Ca2+ sparks activate K+ and Cl- channels, resulting in spontaneous transient currents in guinea-pig tracheal myocytes. J Physiol 513:711–718

    Article  PubMed  CAS  Google Scholar 

  38. Pabelick CM, Prakash YS, Kannan MS, Sieck GC (1999) Spatial and temporal aspects of calcium sparks in porcine tracheal smooth muscle cells. Am J Physiol Cell Mol Physiol 277:L1018–L1025

    CAS  Google Scholar 

  39. Wang YX, Kotlikoff MI (1997) Inactivation of calcium-activated chloride channels in smooth muscle by calcium/calmodulin-dependent protein kinase. Proc Natl Acad Sci U S A 94:14918–14923

    Article  PubMed  CAS  Google Scholar 

  40. Lohn M, Jessner W, Furstenau M, Wellner M, Sorrentino V, Haller H, Luft FC, Gollasch M (2001) Regulation of calcium sparks and spontaneous transient outward currents by RyR3 in arterial vascular smooth muscle cells. Circ Res 89:1051–1057

    PubMed  CAS  Google Scholar 

  41. Pluger S, Faulhaber J, Furstenau M, Lohn M, Waldschutz R, Gollasch M, Haller H, Luft FC, Ehmke H, Pongs O (2000) Mice with disrupted BK channel beta1 subunit gene feature abnormal Ca2+ spark/STOC coupling and elevated blood pressure. Circ Res 87:E53–E60

    PubMed  CAS  Google Scholar 

  42. Ji G, Feldman ME, Greene KS, Sorrentino V, Xin HB, Kotlikoff MI (2004) RYR2 proteins contribute to the formation of Ca2+ sparks in smooth muscle. J Gen Physiol 123:377–386

    Article  PubMed  CAS  Google Scholar 

  43. Ma HT, Venkatachalam K, Rys-Sikora KE, He LP, Zheng F, Gill DL (2003) Modification of phospholipase C-gamma-induced Ca2+ signal generation by 2-aminoethoxydiphenyl borate. Biochem J 376:667–676

    Article  PubMed  CAS  Google Scholar 

  44. Donnelly R, Yang K, Omary MB, Azhar S, Black JL (1995) Expression of multiple isoenzymes of protein kinase C in airway smooth muscle. Am J Respir Cell Mol Biol 13:253–256

    PubMed  CAS  Google Scholar 

  45. Pang L, Nie M, Corbett L, Donnelly R, Gray S, Knox AJ (2002) Protein kinase C-epsilon mediates bradykinin-induced cyclooxygenase-2 expression in human airway smooth muscle cells. FASEB J 16:1435–1437

    PubMed  CAS  Google Scholar 

  46. Gordienko DV, Bolton TB (2002) Crosstalk between ryanodine receptors and IP3 receptors as a factor shaping spontaneous Ca2+-release events in rabbit portal vein myocytes. J Physiol 542:743–762

    Article  PubMed  CAS  Google Scholar 

  47. Bonev AD, Jaggar JH, Rubart M, Nelson MT (1997) Activators of protein kinase C decrease Ca2+ spark frequency in smooth muscle cells from cerebral arteries. Am J Physiol Cell Physiol 273:C2090–C2095

    CAS  Google Scholar 

Download references

Acknowledgement

The authors thank Ms. Jodi Heim for her excellent technical assistance. This work was supported by the American Heart Association (AHA; Y.-M.Z. and Y.-X.W.) and National Institutes of Health (NIH; Y.-X.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Xiao Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, QH., Zheng, YM. & Wang, YX. Two distinct signaling pathways for regulation of spontaneous local Ca2+ release by phospholipase C in airway smooth muscle cells. Pflugers Arch - Eur J Physiol 453, 531–541 (2007). https://doi.org/10.1007/s00424-006-0130-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-006-0130-1

Keywords

Navigation