Skip to main content
Log in

On band structures of layered phononic crystals with flexoelectricity

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Flexoelectricity becomes remarkable in nanoscale dielectrics where strong strain gradients are expected. The effect of flexoelectricity on elastic plane waves propagating in nanoscale layered phononic crystals is discussed in the current work. The fundamental governing equations and boundary conditions are derived from the virtual work principle. Detailed calculations are performed for nanoscale two-layered and three-layered phononic crystals using the transfer matrix method. Numerical results indicate that phononic crystals possess frequency pass bands and stop bands. For nanoscale layered phononic crystals, flexoelectricity increases the middle frequency regardless of the thickness ratio, whereas the flexoelectric effect on the bandwidth depends on the thickness ratio, which implies that there is an optimal thickness ratio to maximize the bandwidth. In addition, the middle frequency and bandwidth decrease with an increase in the unit cell thickness if the thickness ratio is fixed. Hence, considering the flexoelectric effect on band structures of nanoscale phononic crystals may provide guidance in manipulating elastic wave propagation and facilitate potential applications in phononic crystal devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Olsson Iii, R.H., El-Kady, I.: Microfabricated phononic crystal devices and applications. Meas. Sci. Technol. 20(1), 012002 (2009)

    Article  Google Scholar 

  2. Liu, Z.Y., Zhang, X.X., Mao, Y.W., Zhu, Y.Y., Yang, Z.Y., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289, 1734–1736 (2000)

    Article  Google Scholar 

  3. Vasseur, J.O., Deymier, P.A., Chenni, B., Djafari-Rouhani, B., Dobrzynski, L., Prevost, D.: Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals. Phys. Rev. Lett. 86, 3012–3015 (2001)

    Article  Google Scholar 

  4. Ezzahri, Y., Grauby, S., Rampnoux, J.M., Michel, H., Pernot, G., Claeys, W., Dilhaire, S., Rossignol, C., Zeng, G., Shakouri, A.: Coherent phonons in Si/SiGe superlattices. Phys. Rev. B 75, 195309 (2007)

    Article  Google Scholar 

  5. Graczykowski, B., Sledzinska, M., Alzina, F., Gomis-Bresco, J., Reparaz, J.S., Wagner, M.R., Sotomayor Torres, C.M.: Phonon dispersion in hypersonic two-dimensional phononic crystal membranes. Phys. Rev. B 91, 075414 (2015)

    Article  Google Scholar 

  6. Eichenfield, M., Chan, J., Camacho, R.M., Vahala, K.J., Painter, O.: Optomechanical crystals. Nature 462, 78–82 (2009)

    Article  Google Scholar 

  7. Minnich, A.J., Dresselhaus, M.S., Ren, Z.F., Chen, G.: Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2, 466–479 (2009)

    Article  Google Scholar 

  8. Hopkins, P.E., Reinke, C.M., Su, M.F., Olsson, R.H., Shaner, E.A., Leseman, Z.C., Serrano, J.R., Phinney, L.M., El-Kady, I.: Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning. Nano Lett. 11, 107–112 (2011)

    Article  Google Scholar 

  9. Zen, N., Puurtinen, T.A., Isotalo, T.J., Chaudhuri, S., Maasilta, I.J.: Engineering thermal conductance using a two-dimensional phononic crystal. Nat. Commun. 5, 3435 (2014)

    Article  Google Scholar 

  10. Li, F.M., Wang, Y.S.: Study on wave localization in disordered periodic layered piezoelectric composite structures. Int. J. Solids Struct. 42, 6457–6474 (2005)

    Article  MATH  Google Scholar 

  11. Li, F.M., Wang, Y.S.: Study on localization of plane elastic waves in disordered periodic 2–2 piezoelectric composite structures. J. Sound Vib. 296, 554–566 (2006)

    Article  Google Scholar 

  12. Wang, Y.Z., Li, F.M., Huang, W.H., Wang, Y.S.: The propagation and localization of Rayleigh waves in disordered piezoelectric phononic crystals. J. Mech. Phys. Solids 56, 1578–1590 (2008)

    Article  MATH  Google Scholar 

  13. Wang, Y.Z., Li, F.M., Kishimoto, K., Wang, Y.S., Huang, W.H.: Wave localization in randomly disordered layered three-component phononic crystals with thermal effects. Arch. Appl. Mech. 80, 629–640 (2009)

    Article  MATH  Google Scholar 

  14. Golub, M.V., Zhang, C.Z., Wang, Y.S.: SH-wave propagation and resonance phenomena in a periodically layered composite structure with a crack. J. Sound Vib. 330, 3141–3154 (2011)

    Article  Google Scholar 

  15. Khelif, A., Deymier, P.A., Djafari-Rouhani, B., Vasseur, J.O., Dobrzynski, L.: Two-dimensional phononic crystal with tunable narrow pass band: application to a waveguide with selective frequency. J. Appl. Phys. 94, 1308–1311 (2003)

    Article  Google Scholar 

  16. Zhang, S., Cheng, J.C.: Existence of broad acoustic bandgaps in three-component composite. Phys. Rev. B 68, 245101 (2003)

    Article  Google Scholar 

  17. Wu, T.T., Huang, Z.G., Lin, S.: Surface and bulk acoustic waves in two-dimensional phononic crystal consisting of materials with general anisotropy. Phys. Rev. B 69, 094301 (2004)

    Article  Google Scholar 

  18. Wu, T.T., Hsu, Z.C., Huang, Z.G.: Band gaps and the electromechanical coupling coefficient of a surface acoustic wave in a two-dimensional piezoelectric phononic crystal. Phys. Rev. B 71, 064303 (2005)

    Article  Google Scholar 

  19. Benchabane, S., Khelif, A., Rauch, J.Y., Robert, L., Laude, V.: Evidence for complete surface wave band gap in a piezoelectric phononic crystal. Phys. Rev. E 73, 065601(R) (2006)

    Article  Google Scholar 

  20. Hsiao, F.L., Khelif, A., Moubchir, H., Choujaa, A., Chen, C.C., Laude, V.: Complete band gaps and deaf bands of triangular and honeycomb water–steel phononic crystals. J. Appl. Phys. 101, 044903 (2007)

    Article  Google Scholar 

  21. Kuang, W.M., Hou, Z.L., Liu, Y.Y.: The effects of shapes and symmetries of scatterers on the phononic band gap in 2D phononic crystals. Phys. Lett. A 332, 481–490 (2004)

    Article  MATH  Google Scholar 

  22. Ramprasad, R., Shi, N.: Scalability of phononic crystal heterostructures. Appl. Phys. Lett. 87, 111101 (2005)

    Article  Google Scholar 

  23. Hepplestone, S.P., Srivastava, G.P.: Hypersonic modes in nanophononic semiconductors. Phys. Rev. Lett. 101, 105502 (2008)

    Article  Google Scholar 

  24. Chen, A.L., Wang, Y.S.: Size-effect on band structures of nanoscale phononic crystals. Physica E 44, 317–321 (2011)

    Article  Google Scholar 

  25. Zhen, N., Wang, Y.S., Zhang, C.Z.: Surface/interface effect on band structures of nanosized phononic crystals. Mech. Res. Commun. 46, 81–89 (2012)

    Article  Google Scholar 

  26. Hu, S.L., Shen, S.P.: Electric field gradient theory with surface effect for nano dielectrics. Comput. Mater. Contin. 13, 63–87 (2009)

    Google Scholar 

  27. Shen, S.P., Hu, S.L.: A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids 58, 665–677 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hu, S.L., Shen, S.P.: Variational principles and governing equations in nanodielectrics with the flexoelectric effect. Sci. China Phys. Mech. Astron. 53, 1497–1504 (2010)

    Article  Google Scholar 

  29. Quang, H.L., He, Q.C.: The number and types of all possible rotational symmetries for flexoelectric tensors. Proc. R. Soc. A 467, 2369–2386 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shu, L.L., Wei, X.Y., Pang, T., Yao, X., Wang, C.L.: Symmetry of flexoelectric coefficients in crystalline medium. J. Appl. Phys. 110, 104106 (2011)

    Article  Google Scholar 

  31. Cross, L.E.: Flexoelectric effects: charge separation in insulating solids subjected to elastic strain gradients. J. Mater. Sci. 41, 53–63 (2006)

    Article  Google Scholar 

  32. Chandratre, S., Sharma, P.: Coaxing graphene to be piezoelectric. Appl. Phys. Lett. 100, 023114 (2012)

    Article  Google Scholar 

  33. Majdoub, M.S., Sharma, P., Cagin, T.: Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B 77, 125424 (2008)

    Article  Google Scholar 

  34. Majdoub, M.S., Sharma, P., Cagin, T.: Dramatic enhancement in energy harvesting for a narrow range of dimensions in piezoelectric nanostructures. Phys. Rev. B 78, 121407(R) (2008)

    Article  Google Scholar 

  35. Majdoub, M.S., Maranganti, R., Sharma, P.: Understanding the origins of the intrinsic dead layer effect in nanocapacitors. Phys. Rev. B 79, 115412 (2009)

    Article  Google Scholar 

  36. Liang, X., Hu, S.L., Shen, S.P.: Bernoulli–Euler dielectric beam model based on strain-gradient effect. J. Appl. Mech. 80, 044502 (2013)

    Article  Google Scholar 

  37. Liang, X., Shen, S.P.: Size-dependent piezoelectricity and elasticity due to the electric field-strain gradient coupling and strain gradient elasticity. Int. J. Appl. Mech. 5(2), 1350014 (2013)

    Article  Google Scholar 

  38. Liang, X., Hu, S.L., Shen, S.P.: Effects of surface and flexoelectricity on a piezoelectric nanobeam. Smart Mater. Struct. 23, 035020 (2014)

    Article  Google Scholar 

  39. Yan, Z., Jiang, L.Y.: Size-dependent bending and vibration behaviour of piezoelectric nanobeams due to flexoelectricity. J. Phys. D Appl. Phys. 46, 355502 (2013)

    Article  Google Scholar 

  40. Yan, Z., Jiang, L.Y.: Flexoelectric effect on the electroelastic responses of bending piezoelectric nanobeams. J. Appl. Phys. 113, 194102 (2013)

    Article  Google Scholar 

  41. Yan, Z., Jiang, L.Y.: Effect of flexoelectricity on the electroelastic fields of a hollow piezoelectric nanocylinder. Smart Mater. Struct. 24, 065003 (2015)

    Article  Google Scholar 

  42. Zhang, Z.R., Jiang, L.Y.: Size effects on electromechanical coupling fields of a bending piezoelectric nanoplate due to surface effects and flexoelectricity. J. Appl. Phys. 116, 134308 (2014)

    Article  Google Scholar 

  43. Zhang, Z.R., Yan, Z., Jiang, L.Y.: Flexoelectric effect on the electroelastic responses and vibrational behaviors of a piezoelectric nanoplate. J. Appl. Phys. 116, 014307 (2014)

    Article  Google Scholar 

  44. Mao, S., Purohit, P.K.: Insights into flexoelectric solids from strain-gradient elasticity. J. Appl. Mech. 81, 081004 (2014)

    Article  Google Scholar 

  45. Mao, S., Purohit, P.K.: Defects in flexoelectric solids. J. Mech. Phys. Solids 84, 95–115 (2015)

    Article  MathSciNet  Google Scholar 

  46. Mao, S., Purohit, P.K., Aravas, N.: Mixed finite-element formulations in piezoelectricity and flexoelectricity. Proc. R. Soc. A 472, 20150879 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Nguyen, T.D., Mao, S., Yeh, Y.W., Purohit, P.K., McAlpine, M.C.: Nanoscale flexoelectricity. Adv. Mater. 25, 946–974 (2013)

    Article  Google Scholar 

  48. Yudin, P.V., Tagantsev, A.K.: Fundamentals of flexoelectricity in solids. Nanotechnology 24, 432001 (2013)

    Article  Google Scholar 

  49. Cheng, W., Gomopoulos, N., Fytas, G., Gorishnyy, T., Walish, J., Thomas, E.L., Baer, E.: Phonon dispersion and nanomechanical properties of periodic 1D multilayer polymer films. Nano Lett. 8, 1423–1428 (2008)

    Article  Google Scholar 

  50. Weber, M.F.: Giant birefringent optics in multilayer polymer mirrors. Science 287, 2451–2456 (2000)

    Article  Google Scholar 

  51. Liu, C.C., Hu, S.L., Shen, S.P.: Effect of flexoelectricity on band structures of one-dimensional phononic crystals. J. Appl. Mech. 81, 051007 (2013)

    Article  Google Scholar 

  52. Maranganti, R., Sharma, N., Sharma, P.: Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green’s function solutions and embedded inclusions. Phys. Rev. B 74, 014110 (2006)

    Article  Google Scholar 

  53. Sharma, N.D., Landis, C.M., Sharma, P.: Piezoelectric thin-film superlattices without using piezoelectric materials. J. Appl. Phys. 108, 024304 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The supports from the National Natural Science Foundation of China (Grant Nos. 11372238 and 11602189) are gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Liang or Shengping Shen.

Appendices

Appendix A

Below are the analytical expressions for the classical stress, higher-order stress, electric displacement and electric quadrupole needed in the mechanical and electric continuity conditions

$$\begin{aligned} \sigma _{33}= & {} \left\{ {\begin{array}{l} \left[ {c\alpha _1 -L_1 \left( {e\alpha _1 ^{2}+d\alpha _1 } \right) } \right] e^{\alpha _1 z}A \\ \quad -\left[ {c\alpha _1 -L_2 \left( {e\alpha _1 ^{2}-d\alpha _1 } \right) } \right] e^{-\alpha _1 z}B \\ \quad +\left[ {c\alpha _2 -L_3 \left( {e\alpha _2 ^{2}+d\alpha _2 } \right) } \right] e^{\alpha _2 z}C \\ \quad -\left[ {c\alpha _2 -L_4 \left( {e\alpha _2 ^{2}-d\alpha _2 } \right) } \right] e^{-\alpha _2 z}D+dE \\ \end{array}} \right\} \exp \left( {-\,\hbox {i}\omega t} \right) \\ \tau _{333}= & {} \left( {\begin{array}{l} -\,L_1 f\alpha _1 e^{\alpha _1 z}A-L_2 f\alpha _1 e^{-\alpha _1 z}B \\ \quad -\,L_3 f\alpha _2 e^{\alpha _2 z}C-L_4 f\alpha _2 e^{-\alpha _2 z}D+fE \\ \end{array}} \right) \exp \left( {-\,\hbox {i}\omega t} \right) \\ D_3= & {} \left\{ {\begin{array}{l} \left( {L_1 a\alpha _1 +d\alpha _1 +f\alpha _1 ^{2}} \right) e^{\alpha _1 z}A \\ \quad +\left( {L_2 a\alpha _1 -d\alpha _1 +f\alpha _1 ^{2}} \right) e^{-\alpha _1 z}B \\ \quad +\left( {L_3 a\alpha _2 +d\alpha _2 +f\alpha _2 ^{2}} \right) e^{\alpha _2 z}C \\ \quad +\left( {L_4 a\alpha _2 -d\alpha _2 +f\alpha _2 ^{2}} \right) e^{-\alpha _2 z}D-aE \\ \end{array}} \right\} \exp \left( {-\,\hbox {i}\omega t} \right) \\ Q_{33}= & {} \left\{ {\begin{array}{l} \left( {L_1 b\alpha _1 ^{2}+e\alpha _1 } \right) e^{\alpha _1 z}A-\left( {L_2 b\alpha _1 ^{2}+e\alpha _1 } \right) e^{-\alpha _1 z}B \\ \quad +\left( {L_3 b\alpha _2 ^{2}+e\alpha _2 } \right) e^{\alpha _2 z}C-\left( {L_4 b\alpha _2 ^{2}+e\alpha _2 } \right) e^{-\alpha _2 z}D \\ \end{array}} \right\} \exp \left( {-\,\hbox {i}\omega t} \right) \end{aligned}$$

Appendix B

The state matrix \(\mathbf{M}_j \left( z \right) \) can be written as

$$\begin{aligned} \begin{array}{l} \mathbf{M}_j \left( z \right) =\left[ {{\begin{array}{ll} {e^{\alpha _{1j} z}}&{} \quad {e^{-\alpha _{1j} z}} \\ {-\,L_{1j} e^{\alpha _{1j} z}}&{} \quad {L_{2j} e^{-\alpha _{1j} z}} \\ {\left[ {c_j \alpha _{1j} -L_{1j} \left( {h_j \alpha _{1j} ^{2}+d_j \alpha _{1j} } \right) } \right] e^{\alpha _{1j} z}}&{} \quad {-\left[ {c_j \alpha _{1j} -L_{2j} \left( {h_j \alpha _{1j} ^{2}-d_j \alpha _{1j} } \right) } \right] e^{-\alpha _{1j} z}} \\ {-\,L_{1j} f_j \alpha _{1j} e^{\alpha _{1j} z}}&{} \quad {-\,L_{2j} f_j \alpha _{1j} e^{-\alpha _{1j} z}} \\ 0&{} \quad 0 \\ {\left( {L_{1j} b_j \alpha _{1j} ^{2}+e_j \alpha _{1j} } \right) e^{\alpha _{1j} z}}&{} \quad {-\left( {L_{2j} b_j \alpha _{1j} ^{2}+e_j \alpha _{1j} } \right) e^{-\alpha _{1j} z}} \\ \end{array} }} \right. \\ \left. {{\begin{array}{llll} {e^{\alpha _{2j} z}}&{} \quad {e^{-\alpha _{2j} z}}&{} \quad 0&{} \quad 0 \\ {-\,L_{3j} e^{\alpha _{2j} z}}&{} \quad {L_{4j} e^{-\alpha _{2j} z}}&{} \quad z &{} \quad 1 \\ {\left[ {c_j \alpha _{2j} -L_{3j} \left( {h_j \alpha _{2j} ^{2}+d_j \alpha _{2j} } \right) } \right] e^{\alpha _{2j} z}}&{} \quad {-\left[ {c_j \alpha _{2j} -L_{4j} \left( {h_j \alpha _{2j} ^{2}-d_j \alpha _{2j} } \right) } \right] e^{-\alpha _{2j} z}}&{} \quad {d_j }&{} \quad 0 \\ {-\,L_{3j} f_j \alpha _{2j} e^{\alpha _{2j} z}}&{} \quad {-\,L_{4j} f_j \alpha _{2j} e^{-\alpha _{2j} z}}&{} \quad {f_j }&{} \quad 0 \\ 0&{} \quad 0&{} \quad {-\,a_j }&{} \quad 0 \\ {\left( {L_{3j} b_j \alpha _{2j} ^{2}+e_j \alpha _{2j} } \right) e^{\alpha _{2j} z}}&{} \quad {-\left( {L_{4j} b_j \alpha _{2j} ^{2}+e_j \alpha _{2j} } \right) e^{-\alpha _{2j} z}}&{} \quad 0&{} \quad 0 \\ \end{array} }} \right] \\ \end{array} \end{aligned}$$

where \(j=1\), 2 and 3 represent the first, second and third sublayers, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Hu, T., Liang, X. et al. On band structures of layered phononic crystals with flexoelectricity. Arch Appl Mech 88, 629–644 (2018). https://doi.org/10.1007/s00419-017-1332-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-017-1332-z

Keywords

Navigation