Skip to main content

Advertisement

Log in

Video recording and light intensity change analysis during cataract surgery using an animal model

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To estimate light exposure changes during cataract surgery through intraoperative images simulated from the “patient’s perspective” using an animal model.

Methods

In this experimental study, a 3-mm maculostomy was performed through the posterior globe’s surface of 15 porcine eyes. Eyes were fixated to a glass slide and placed over an iPad camera. Video footage of a cataract surgery was obtained through the maculostomy for each eye, keeping light exposure parameters and focus constant. Seventy-five images, five from each eye, were extracted at pre-determined points, and mean gray value (MGV), a light intensity measure, was calculated. Differences in MGV between discrete surgical steps were evaluated using multiple one-sample t-tests.

Results

This technique allowed for the capture of a full-length cataract surgery through a 3-mm maculostomy. MGV range was 14.21–132.51. Light intensity was similar across surgeries and varied greatly through each procedure. A 24% decrease in MGV between post-hydrodissection and post-phacoemulsification stages was noted (difference − 18.36; 95% CI − 30.50 to − 6.22; p value = 0.006). A 22.4% decrease in light intensity was noted after phacoemulsification in comparison to the starting image (MGV difference − 16.78; 95% CI − 32.45 to − 1.12; p value: 0.0375). Light intensity was similar at the start and end of surgery (difference − 7.15; 95% CI − 19.35 to + 5.05; p value = 0.229).

Conclusions

Light intensity changes through different steps of cataract surgery and may be minimal after phacoemulsification completion. This video and data may serve as informational and educational tools for surgeons and patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sumich PM, Francis IC, Kappagoda MB, Alexander SL (1998) Artist’s impression of endocapsular phacoemulsification surgery. J Cataract Refract Surg 24:1525–1528. https://doi.org/10.1016/S0886-3350(98)80178-8

    Article  CAS  PubMed  Google Scholar 

  2. Murdoch IE, Sze P (1994) Visual experience during cataract surgery. Eye 8:666–667. https://doi.org/10.1038/eye.1994.164

    Article  PubMed  Google Scholar 

  3. Tranos PG, Wickremasinghe SS, Sinclair N et al (2003) Visual perception during phacoemulsification cataract surgery under topical and regional anaesthesia. Acta Ophthalmol Scand 81:118–122. https://doi.org/10.1034/j.1600-0420.2003.00029.x

    Article  PubMed  Google Scholar 

  4. Rengaraj V, Radhakrishnan M, Au Eong K-G et al (2004) Visual experience during phacoemulsification under topical versus retrobulbar anesthesia: results of a prospective, randomized, controlled trial. Am J Ophthalmol 138:782–787. https://doi.org/10.1016/j.ajo.2004.06.023

    Article  PubMed  Google Scholar 

  5. Au Eong KG, Lim TH, Lee HM, Yong VSH (2000) Subjective visual experience during phacoemulsification and intraocular lens implantation using retrobulbar anesthesia1. J Cataract Refract Surg 26:842–846. https://doi.org/10.1016/S0886-3350(99)00452-6

    Article  CAS  PubMed  Google Scholar 

  6. Prasad N, Kumar CM, Patil BB, Dowd TC (2003) Subjective visual experience during phacoemulsification cataract surgery under sub-Tenon’s block. Eye 17:407–409. https://doi.org/10.1038/sj.eye.6700370

    Article  CAS  PubMed  Google Scholar 

  7. Newman DK (2000) Visual experience during phacoemulsification cataract surgery under topical anaesthesia. Br J Ophthalmol 84:13–15. https://doi.org/10.1136/bjo.84.1.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wickremasinghe SS, Tranos PG, Sinclair N et al (2003) Visual perception during phacoemulsification cataract surgery under subtenons anaesthesia. Eye 17:501–505. https://doi.org/10.1038/sj.eye.6700414

    Article  CAS  PubMed  Google Scholar 

  9. Wenzel M, Schulze Schwering M (2016) Which colours are seen by the patient during cataract surgery? Results of an intraoperative interview. Eye 30:385–391. https://doi.org/10.1038/eye.2015.239

    Article  CAS  PubMed  Google Scholar 

  10. Landry RJ, Miller SA, Byrnes GA (2002) Study of filtered light on potential retinal photic hazards with operation microscopes used for ocular surgery. Appl Opt 41:802–804. https://doi.org/10.1364/AO.41.000802

    Article  PubMed  Google Scholar 

  11. Youssef PN, Sheibani N, Albert DM (2011) Retinal light toxicity. Eye (Lond) 25:1–14. https://doi.org/10.1038/eye.2010.149

    Article  CAS  Google Scholar 

  12. Pavilack MA, Brod RD (2001) Site of potential operating microscope light-induced phototoxicity on the human retina during temporal approach eye surgery. Ophthalmology 108:381–385

    Article  CAS  PubMed  Google Scholar 

  13. Kleinmann G, Hoffman P, Schechtman E, Pollack A (2002) Microscope-induced retinal phototoxicity in cataract surgery of short duration. Ophthalmology 109:334–338

    Article  PubMed  Google Scholar 

  14. Stamler JF, Blodi CF, Verdier D, Krachmer JH (1988) Microscope light-induced maculopathy in combined penetrating keratoplasty, extracapsular cataract extraction, and intraocular lens implantation. Ophthalmology 95:1142–1146

    Article  CAS  PubMed  Google Scholar 

  15. Bahar I, Kaiserman I, Mashor RS et al (2010) Femtosecond LASIK combined with astigmatic keratotomy for the correction of refractive errors after penetrating keratoplasty. Ophthalmic Surgery, Lasers, and Imaging 41:242–249. https://doi.org/10.3928/15428877-20100303-14

    Article  Google Scholar 

  16. Kweon EY, Ahn M, Lee DW et al (2009) Operating microscope light-induced phototoxic maculopathy after transscleral sutured posterior chamber intraocular lens implantation. Retina 29:1491–1495. https://doi.org/10.1097/IAE.0b013e3181aa103b

    Article  PubMed  Google Scholar 

  17. Long VW, Woodruff GH (2004) Bilateral retinal phototoxic injury during cataract surgery in a child. J AAPOS Off Publ Am Assoc Pediatr Ophthalmol Strabismus 8:278–279. https://doi.org/10.1016/S109185310400014X

    Article  Google Scholar 

  18. Seo H, Nam DH, Lee JY et al (2018) Macular photostress and visual experience between microscope and intracameral illumination during cataract surgery. J Cataract Refract Surg 44:190–197. https://doi.org/10.1016/j.jcrs.2017.11.016

    Article  PubMed  Google Scholar 

  19. Ipek T, Hanga MP, Hartwig A et al (2018) Dry eye following cataract surgery: the effect of light exposure using an in-vitro model. Contact Lens Anterior Eye 41:128–131. https://doi.org/10.1016/j.clae.2017.11.003

    Article  PubMed  Google Scholar 

  20. Eong KGA, Lee HM, Lim ATH et al (1999) Subjective visual experience during extracapsular cataract extraction and intraocular lens implantation under retrobulbar anaesthesia. Eye 13:325–328. https://doi.org/10.1038/eye.1999.83

    Article  Google Scholar 

  21. Au Eong K-G, Low C-H, Heng W-J et al (2000) Subjective visual experience during phacoemulsification and intraocular lens implantation under topical anesthesia1. Ophthalmology 107:248–250. https://doi.org/10.1016/S0161-6420(99)00080-9

    Article  CAS  PubMed  Google Scholar 

  22. Chaudhry TA, Aqil A, Aziz K et al (2014) Patients’ visual experience during phacoemulsification cataract surgery and associated fear, BMC Res Notes:7. https://doi.org/10.1186/1756-0500-7-663

  23. Inoue M, Uchida A, Shinoda K et al (2014) Images created in a model eye during simulated cataract surgery can be the basis for images perceived by patients during cataract surgery. Eye 28:870–879. https://doi.org/10.1038/eye.2014.80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Davis BL, Nilson CD, Mamalis N (2004) Revised Miyake–Apple technique for postmortem eye preparation. J Cataract Refract Surg 30:546–549. https://doi.org/10.1016/S0886-3350(03)00666-7

    Article  PubMed  Google Scholar 

  25. Miyake K, Miyake C (1985) Intraoperative posterior chamber lens haptic fixation in the human cadaver eye. Ophthalmic Surgery, Lasers Imaging Retin 16:230–236. https://doi.org/10.3928/1542-8877-19850401-04

    Article  CAS  Google Scholar 

  26. Apple DJ, Lim ES, Morgan RC et al (1990) Preparation and study of human eyes obtained postmortem with the Miyake posterior photographic technique. Ophthalmology 97:810–816. https://doi.org/10.1016/S0161-6420(90)32507-1

    Article  CAS  PubMed  Google Scholar 

  27. Henderson BA, Grimes KJ, Fintelmann RE, Oetting TA (2009) Stepwise approach to establishing an ophthalmology wet laboratory. J Cataract Refract Surg 35:1121–1128. https://doi.org/10.1016/j.jcrs.2009.01.027

    Article  PubMed  Google Scholar 

  28. Sugiura T, Kurosaka D, Uezuki Y et al (1999) Creating cataract in a pig eye1. J Cataract Refract Surg 25:615–621. https://doi.org/10.1016/S0886-3350(99)00002-4

    Article  CAS  PubMed  Google Scholar 

  29. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  Google Scholar 

  30. Ferreira T, Rasband W (2012) ImageJ User Guide (ImageJ/Fiji 1.46)

  31. Sanchez I, Martin R, Ussa F, Fernandez-Bueno I (2011) The parameters of the porcine eyeball. Graefe’s Arch. Clin. Exp, Ophthalmol

    Book  Google Scholar 

  32. Nishi O, Nishi K, Nishi Y, Chang S (2008) Capsular bag refilling using a new accommodating intraocular lens. J Cataract Refract Surg 34:302–309. https://doi.org/10.1016/j.jcrs.2007.09.042

    Article  PubMed  PubMed Central  Google Scholar 

  33. Menduni F, Davies LN, Madrid-Costa D et al (2018) Characterisation of the porcine eyeball as an in-vitro model for dry eye. Contact Lens Anterior Eye 41:13–17. https://doi.org/10.1016/j.clae.2017.09.003

    Article  PubMed  Google Scholar 

  34. van Vreeswijk H, Pameyer JH (1998) Inducing cataract in postmortem pig eyes for cataract surgery training purposes. J Cataract Refract Surg 24:17–18. https://doi.org/10.1016/S0886-3350(98)80068-0

    Article  PubMed  Google Scholar 

  35. Sparrow JR, Nakanishi K, Parish CA (2000) The lipofuscin fluorophore A2E mediates blue light–induced damage to retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci 41:1981–1989

    CAS  PubMed  Google Scholar 

  36. Calkins JL, Hochheimer BF (1979) Retinal light exposure from operation microscopes. Arch Ophthalmol (Chicago, Ill 1960) 97:2363–2367

    Article  CAS  Google Scholar 

  37. Williamson TH, Strong NP, Sparrow J et al (1992) Contrast sensitivity and glare in cataract using the Pelli-Robson chart. Br J Ophthalmol 76:719–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Díez Ajenjo MA, García Domene MC, Peris Martínez C (2015) Refractive changes in nuclear, cortical and posterior subcapsular cataracts. Effect of the type and grade. J Optom 8:86–92. https://doi.org/10.1016/j.optom.2014.07.006

    Article  PubMed  Google Scholar 

  39. Siik S, Chylack LT, Friend J et al (1999) Lens autofluorescence and light scatter in relation to the lens opacities classification system, LOCS III. Acta Ophthalmol Scand 77:509–514

    Article  CAS  PubMed  Google Scholar 

  40. Seland JH, Chylack LT, Wolfe JK (1992) Indirect spectral transmission ratio measurements of the aging crystalline lens nucleus. Acta Ophthalmol 70:376–382

    Article  CAS  Google Scholar 

  41. Yuan L, Yao H, Xu Y et al (2017) CRISPR/Cas9–mediated mutation of αA-Crystallin gene induces congenital cataracts in rabbits. Investig Opthalmology Vis Sci 58:BIO34. https://doi.org/10.1167/iovs.16-21287

    Article  CAS  Google Scholar 

  42. Shibata T, Shibata S, Ishigaki Y et al (2018) Tropomyosin 2 heterozygous knockout in mice using CRISPR-Cas9 system displays the inhibition of injury-induced epithelial-mesenchymal transition, and lens opacity. Mech Ageing Dev 171:24–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tan CSH, Au Eong K-G, Kumar CM (2005) Visual experiences during cataract surgery: what anaesthesia providers should know. Eur J Anaesthesiol 22:413–419

    Article  PubMed  Google Scholar 

Download references

Funding

This study was partially funded by the Research to Prevent Blindness, New York, NY, Unrestricted Grant. Research to Prevent Blindness, New York, NY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie A. Afshari.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukuoka, H., Sella, R., Fuller, S.D. et al. Video recording and light intensity change analysis during cataract surgery using an animal model. Graefes Arch Clin Exp Ophthalmol 257, 1231–1238 (2019). https://doi.org/10.1007/s00417-019-04288-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-019-04288-0

Keywords

Navigation