Skip to main content

Advertisement

Log in

The parameters of the porcine eyeball

  • Review Article
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

The eye of the domestic pig (Sus scrofa domestica) is an ex vivo animal model often used in vision sciences research (retina studies, glaucoma, cataracts, etc.). However, only a few papers have compiled pig eye anatomical descriptions. The purpose of this paper is to describe pig and human eye anatomical parameters to help investigators in their choice of animal model depending on their study objective.

Methods

A wide search of current medical literature was performed (English language) using PubMed. Anteroposterior axial length and corneal radius, astigmatism, vertical and horizontal diameter, and pachymetry (slit-scan and ultrasound) were measured in five enucleated pig eyes of animals 6 to 8 months old.

Results

Horizontal corneal diameter was 14.31 ± 0.25 mm (CI 95% 14.03 mm–14.59 mm), vertical diameter was 12.00 ± 0 mm, anteroposterior length was 23.9 ± 0.08 mm (CI 95% 23.01 mm–29.99 mm), central corneal ultrasound pachymetry was 877.6 ± 13.58 μm (CI 95% 865.70 μm–889.50 μm) and slit-scan pachymetry was 906.2 ± 15.30 μm (CI 95% 892.78 μm–919.61 μm). Automatic keratometry (main meridians) was 41.19 ± 1.76D and 38.83 ± 2.89D (CI 95% 40.53D–41.81D and 37.76D–39.89D respectively) with an astigmatism of 2.36 ± 1.70D (CI 95% 1.72D–3.00D), and manual keratometry was 41.05 ± 0.54D and 39.30 ± 1.15D (CI 95% 40.57D–41.52D and 38.29D–40.31D respectively) with an astigmatism of 1.75 ± 1.31D (CI 95% 0.60D–2.90D).

Conclusion

This paper describes the anatomy of the pig eyeball for easy use and interpretation by researchers who are considering their choice of animal model in vision sciences research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fernandez-Bueno I, Pastor JC, Gayoso MJ, Alcalde I, Garcia MT (2008) Müller and macrophage-like cell interactions in an organotypic culture of porcine neuroretina. Mol Vis 14:2148–2156

    PubMed  CAS  Google Scholar 

  2. Acosta E, Vázquez D, Castillo LR (2009) Analysis of the optical properties of crystalline lenses by point-diffraction interferometry. Ophthalmic Physiol Opt 29:235–246

    Article  PubMed  Google Scholar 

  3. Wong KH, Koopmans SA, Terwee T, Kooijman AC (2007) Changes in spherical aberration after lens refilling with a silicone oil. Invest Ophthalmol Vis Sci 48:1261–1267

    Article  PubMed  Google Scholar 

  4. Ruiz-Ederra J, García M, Hernández M, Urcola H, Hernández-Barbáchano E, Araiz J, Vecino E (2005) The pig eye as a novel model of glaucoma. Exp Eye Res 81:561–569

    Article  PubMed  CAS  Google Scholar 

  5. Nishi O, Nishi K, Nishi Y, Chang S (2008) Capsular bag refilling using a new accommodating intraocular lens. J Cataract Refract Surg 34:302–309

    Article  PubMed  Google Scholar 

  6. Kim MK, Oh JY, Ko JH, Lee HJ, Jung JH, Wee WR, Lee JH, Park CG, Kim SJ, Ahn C, Kim SJ, Hwang SY (2009) DNA microarray-based gene expression profiling in porcine keratocytes and corneal endothelial cells and comparative analysis associated with xeno-related rejection. J Korean Med Sci 24:189–196

    Article  PubMed  CAS  Google Scholar 

  7. Faber C, Wang M, Scherfig E, Sørensen KE, Prause JU, Ehlers N, Nissen MH (2009) Orthotopic porcine corneal xenotransplantation using a human graft. Acta Ophthalmol 87:917–919

    Article  PubMed  Google Scholar 

  8. Bartholomew LR, Pang DX, Sam DA, Cavender JC (1997) Ultrasound biomicroscopy of globes from young adult pigs. Am J Vet Res 58:942–948

    PubMed  CAS  Google Scholar 

  9. Newell FW (1993) Oftalmología fundamentos y conceptos, 7th edn. Mosby, España

    Google Scholar 

  10. Forrester J, Dick A, McMenamin P, Lee W (1996) The eye basics sciences in practice. Saunders, London

    Google Scholar 

  11. Pesudovs K (2004) Autorefraction as an outcome measure of laser in situ keratomileusis. J Cataract Refract Surg 30:1921–1928

    Article  PubMed  Google Scholar 

  12. Nicoli S, Ferrari G, Quarta M, Macaluso C, Santi P (2009) In vitro transscleral iontophoresis of high molecular weight neutral compounds. Eur J Pharm Sci 36:486–492

    Article  PubMed  CAS  Google Scholar 

  13. McMenamin PG, Steptoe RJ (1991) Normal anatomy of the aqueous humour outflow system in the domestic pig eye. J Anat 178:65–77

    PubMed  CAS  Google Scholar 

  14. May CA, Skorski LM, Lütjen-Drecoll E (2005) Innervation of the porcine ciliary muscle and outflow region. J Anat 206:231–236

    Article  PubMed  Google Scholar 

  15. Nicoli S, Ferrari G, Quarta M, Macaluso C, Govoni P, Dallatana D, Santi P (2009) Porcine sclera as a model of human sclera for in vitro transport experiments: histology, SEM, and comparative permeability. Mol Vis 15:259–266

    PubMed  CAS  Google Scholar 

  16. Voss Kyhn M, Kiilgaard JF, Lopez AG, Scherfig E, Prause JU, la Cour M (2007) The multifocal electroretinogram (mfERG) in the pig. Acta Ophthalmol Scand 85:438–444

    Article  PubMed  Google Scholar 

  17. Jay L, Brocas A, Singh K, Kieffer JC, Brunette I, Ozaki T (2008) Determination of porcine corneal layers with high spatial resolution by simultaneous second and third harmonic generation microscopy. Opt Express 16:16284–16293

    Article  PubMed  CAS  Google Scholar 

  18. Faber C, Scherfig E, Prause JU, Søresen KE (2008) Corneal thickness in pigs measured by ultrasound pachymetry in vivo. Scand J Lab Anim Sci 35:39–43c

    CAS  Google Scholar 

  19. Elsheikh A, Alhasso D (2009) Mechanical anisotropy of porcine cornea and correlation with stromal microstructure. Exp Eye Res 88:1084–1091

    Article  PubMed  CAS  Google Scholar 

  20. Xu YG, Xu YS, Huang C, Feng Y, Li Y, Wang W (2008) Development of a rabbit corneal equivalent using an acellular corneal matrix of a porcine substrate. Mol Vis 14:2180–2189

    PubMed  CAS  Google Scholar 

  21. Keenan J, Orr DF, Pierscionek BK (2008) Patterns of crystallin distribution in porcine eye lenses. Mol Vis 14:1245–1253

    PubMed  CAS  Google Scholar 

  22. Shiratani T, Shimizu K, Fujisawa K, Uga S, Nagano K, Murakami Y (2008) Crystalline lens changes in porcine eyes with implanted phakic IOL (ICL) with a central hole. Graefes Arch Clin Exp Ophthalmol 246:719–728

    Article  PubMed  Google Scholar 

  23. Chong C, Suzuki T, Totsuka K, Morosawa A, Sakai T (2009) Large coherence length swept source for axial length measurement of the eye. Appl Opt 48:144–150

    Article  Google Scholar 

  24. Wagner JA, Edwards A, Schuman JS (2004) Characterization of uveoscleral outflow in enucleated porcine eyes perfused under constant pressure. Invest Ophthalmol Vis Sci 45:3203–3206

    Article  PubMed  Google Scholar 

  25. Bertschinger DR, Beknazar E, Simonutti M, Safran AB, Sahel JA, Rosolen SG, Picaud S, Salzmann J (2008) A review of in vivo animal studies in retinal prosthesis research. Graefes Arch Clin Exp Ophthalmol 246:1505–1517

    Article  PubMed  Google Scholar 

  26. Pandav S, Morgan WH, Townsend R, Cringle SJ, Yu DY (2008) Inability of a confocal scanning laser doppler flowmeter to measure choroidal blood flow in the pig eye. Open Ophthalmol J 2:146–152

    Article  PubMed  Google Scholar 

  27. Agopov M, Lomb L, La Schiazza O, Bille JF (2009) Second harmonic generation imaging of the pig lamina cribrosa using a scanning laser ophthalmoscope-based microscope. Lasers Med Sci 24:787–792

    Article  PubMed  CAS  Google Scholar 

  28. Gu P, Harwood LJ, Zhang X, Wylie M, Curry WJ, Cogliati T (2007) Isolation of retinal progenitor and stem cells from the porcine eye. Mol Vis 13:1045–1057

    PubMed  CAS  Google Scholar 

  29. Beattie JR, Brockbank S, McGarvey JJ, Curry WJ (2007) Raman microscopy of porcine inner retinal layers from the area centralis. Mol Vis 13:1106–1113

    PubMed  CAS  Google Scholar 

  30. Fang IM, Yang CH, Yang CM, Chen MS (2009) Overexpression of integrin alpha6 and beta4 enhances adhesion and proliferation of human retinal pigment epithelial cells on layers of porcine Bruch's membrane. Exp Eye Res 88:12–21

    Article  PubMed  CAS  Google Scholar 

  31. Kiilgaard JF, Prause JU, Prause M, Scherfig E, Nissen MH, la Cour M (2007) Subretinal posterior pole injury induces selective proliferation of RPE cells in the periphery in in vivo studies in pigs. Invest Ophthalmol Vis Sci 48:355–360

    Article  PubMed  Google Scholar 

  32. Ng YF, Chan HH, Chu PH, To CH, Gilger BC, Petters RM, Wong F (2008) Multifocal electroretinogram in rhodopsin P347L transgenic pigs. Invest Ophthalmol Vis Sci 49:2208–2215

    Article  PubMed  Google Scholar 

  33. Annaka M, Okamoto M, Matsuura T, Hara Y, Sasaki S (2007) Dynamic light scattering study of salt effect on phase behavior of pig vitreous body and its microscopic implication. J Phys Chem B 111:8411–8418

    Article  PubMed  CAS  Google Scholar 

  34. Swindle KE, Hamilton PD, Ravi N (2008) In situ formation of hydrogels as vitreous substitutes: viscoelastic comparison to porcine vitreous. J Biomed Mater Res A 87:656–665

    PubMed  Google Scholar 

  35. Peng YW, Hao Y, Petters RM, Wong F (2000) Ectopic synaptogenesis in the mammalian retina caused by rod photoreceptor-specific mutations. Nat Neurosci 3:1121–1127

    Article  PubMed  CAS  Google Scholar 

  36. Ninomiya H, Inomata T (2006) Microvascular anatomy of the pig eye: scanning electron microscopy of vascular corrosion casts. J Vet Med Sci 68:1149–1154

    Article  PubMed  Google Scholar 

  37. Klećkowska-Nawrot J, Dziegiel P (2007) Morphology of the third eyelid and superficial gland of the third eyelid on pig fetuses. Anat Histol Embryol 36:428–432

    Article  PubMed  Google Scholar 

  38. Klećkowska-Nawrot J, Dziegiel P (2008) Morphology of deep gland of the third eyelid in pig foetuses. Anat Histol Embryol 37:36–40

    PubMed  Google Scholar 

  39. Olsen TW, Sanderson S, Feng X, Hubbard WC (2002) Porcine sclera: thickness and surface area. Invest Ophthalmol Vis Sci 43:2529–2532

    PubMed  Google Scholar 

  40. Warfvinge K, Kiilgaard JF, Klassen H, Zamiri P, Scherfig E, Streilein W, Prause JU, Young MJ (2006) Retinal progenitor cell xenografts to the pig retina: immunological reactions. Cell Transplant 15:603–612

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank all slaughterhouse staff at Justino Gutiérrez SL (Laguna de Duero, Valladolid, Spain) for the cooperation in providing samples used in this work. I. Fernandez-Bueno is supported by the “Junta de Castilla y Leon”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Sanchez.

Additional information

The authors have no proprietary, financial or commercial interest in any material or method mentioned in this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanchez, I., Martin, R., Ussa, F. et al. The parameters of the porcine eyeball. Graefes Arch Clin Exp Ophthalmol 249, 475–482 (2011). https://doi.org/10.1007/s00417-011-1617-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-011-1617-9

Keywords

Navigation