Skip to main content

Advertisement

Log in

Detecting drugs in dry bone: a pilot study of skeletal remains with a post-mortem interval over 23 years

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

In decomposed or skeletonized bodies, conventional matrices used in forensic toxicology may no longer be available for analysis. The aim of this paper was to test the survival and detection of toxicological substances in dry bone samples with over 23 years of post-mortem interval. In this perspective, bone samples from the cranium, ribs, and vertebrae of seven skeletons from the CAL Milano Cemetery Skeletal Collection, buried for over 23 years, fully decomposed and altered by taphonomic factors were selected based on their ante-mortem data, which included verified or suspected drug addictions or overdose. Qualitative and quantitative analyses were performed with Dionex™ ASE™ 350 Accelerated Solvent Extractor and Q-Exactive Orbitrap–mass spectrometry with a HPLC system. Positive results were obtained in six of the seven cases, and different psychoactive drugs (and in some cases their active metabolites) were detected, including analgesic (two opioids: methadone and buprenorphine) and anxiolytic drugs (benzodiazepines, in particular delorazepam, diazepam, nordiazepam, and lorazepam), a cannabinoid metabolite (THCCOOH) as well as metabolites of stimulants (benzoylecgonine and MDA). Consequently, this research shows that toxicological substances may be found in bone tissue after over 23 years of post-mortem interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dinis-Oliveira RJ, Carvalho F, Duarte JA, Remião F, Marques A, Santos A, Magalhães T (2010) Collection of biological samples in forensic toxicology. Toxicol Mech Methods 20:363–414. https://doi.org/10.3109/15376516.2010.497976

    Article  CAS  PubMed  Google Scholar 

  2. Mbughuni MM, Jannetto PJ, Langman LJ (2016) Mass spectrometry applications for toxicology. EJIFCC 27:263–357

    Google Scholar 

  3. Caplan YH (2008) Foreword. In: Jenkins AJ (ed) Drug testing in alternate biological specimens. Forensic Science and Medicine, pp ix–xi

  4. Bévalot F, Cartiser N, Bottinelli C, Guitton J, Fanton L (2016) State of the art in bile analysis in forensic toxicology. Forensic Sci Int 259:133–154. https://doi.org/10.1016/j.forsciint.2015.10.034

    Article  CAS  PubMed  Google Scholar 

  5. Guillot E, de Mazancourt P, Durigon M, Alvarez JC (2007) Morphine and 6-acetylmorphine concentrations in blood, brain, spinal cord, bone marrow and bone after lethal acute or chronic diacetylmorphine administration to mice. Forensic Sci Int 166:139–144. https://doi.org/10.1016/j.forsciint.2006.03.029

    Article  CAS  PubMed  Google Scholar 

  6. Orfanidis A, Gika H, Mastrogianni O, Krokos A, Theodoridis G, Zaggelidou E, Raikos N (2018) Determination of drugs of abuse and pharmaceuticals in skeletal tissue by UHPLC–MS/MS. Forensic Sci Int 290:137–145. https://doi.org/10.1016/j.forsciint.2018.07.004

    Article  CAS  PubMed  Google Scholar 

  7. Watterson J (2006) Challenges in forensic toxicology of skeletonised human remains. Analyst 131:961–965. https://doi.org/10.1039/b609130j

    Article  CAS  PubMed  Google Scholar 

  8. Tattoli L, Tsokos M, Sautter J, Anagnostopoulos J, Maselli E, Ingravallo G, Delia M, Solarino B (2013) Postmortem bone marrow analysis in forensic science: Study of 73 cases and review of the literature. Forensic Sci Int 234:72–78. https://doi.org/10.1016/j.forsciint.2013.10.040

    Article  PubMed  Google Scholar 

  9. Wietecha-Posłuszny R, Lendor S, Garnysz M, Zawadzki M, Kościelniak P (2017) Human bone marrow as a tissue in post-mortem identification and determination of psychoactive substances—screening methodology. J Chromatogr B Anal Technol Biomed Life Sci 1061–1062:459–467. https://doi.org/10.1016/j.jchromb.2017.08.006

    Article  CAS  Google Scholar 

  10. Drummer OH (2008) Drugs in bone and bone marrow. In: Jenkins AJ (ed) Drug Testing in Alternate Biological Specimens. Forensic Science and Medicine, pp 131–136

  11. Raikos N, Tsoukali H, Njau SN (2001) Determination of opiates in postmortem bone and bone marrow. Forensic Sci Int 123:140–141. https://doi.org/10.1016/S0379-0738(01)00529-1

    Article  CAS  PubMed  Google Scholar 

  12. Rubin KM (2018) The current state and future directions of skeletal toxicology: forensic and humanitarian implications of a proposed model for the in vivo incorporation of drugs into the human skeleton. Forensic Sci Int 289:419–428. https://doi.org/10.1016/j.forsciint.2018.06.024

    Article  CAS  PubMed  Google Scholar 

  13. Cattaneo C, Gigli F, Lodi F, Grandi M (2003) The detection of morphine and codeine in human teeth: an aid in the identification and study of human skeletal remains. J Forensic Odontostomatol 21:1–5

    CAS  PubMed  Google Scholar 

  14. Maeda H, Oritani S, Nagai K, Tanaka N (1997) Detection of bromisovalum from the bone marrow of skeletonized human remains: a case report with a comparison between gas chromatography/mass spectrometry (GC/MS) and high-performance liquid chromatography/mass spectrometry (LC/MS). Med Sci Law 37:248–253. https://doi.org/10.1177/002580249703700310

    Article  CAS  PubMed  Google Scholar 

  15. Gorczynski LY, Melbye FJ (2001) Detection of benzodiazepines in different tissues, including bone, using a quantitative ELISA assay. J Forensic Sci 46:916–918. https://doi.org/10.1520/jfs15069j

    Article  CAS  PubMed  Google Scholar 

  16. Schloegl H, Rost T, Schmidt W, Wurst FM, Weinmann W (2006) Distribution of ethyl glucuronide in rib bone marrow, other tissues and body liquids as proof of alcohol consumption before death. Forensic Sci Int 156:213–218. https://doi.org/10.1016/J.FORSCIINT.2005.03.024

    Article  CAS  PubMed  Google Scholar 

  17. Cartiser N, Bévalot F, Fanton L, Gaillard Y, Guitton J (2011) State-of-the-art of bone marrow analysis in forensic toxicology: a review. Int J Legal Med 125:181–198. https://doi.org/10.1007/s00414-010-0525-6

    Article  PubMed  Google Scholar 

  18. Grellner W, Glenewinkel F (1997) Exhumations: synopsis of morphological and toxicological findings in relation to the postmortem interval: survey on a 20-year period and review of the literature. Forensic Sci Int 90:139–159. https://doi.org/10.1016/S0379-0738(97)00154-0

    Article  CAS  PubMed  Google Scholar 

  19. McIntyre IM, King CV, Boratto M, Drummer OH (2000) Post-mortem drug analyses in bone and bone marrow. Ther Drug Monit 22:79–83

    Article  CAS  Google Scholar 

  20. Horak EL, Jenkins AJ (2005) Postmortem tissue distribution of olanzapine and citalopram in a drug intoxication. J Forensic Sci 50:1–3. https://doi.org/10.1520/jfs2004067

    Article  Google Scholar 

  21. Fernandez-Lopez L, Luna-Maldonado A, Falcon M, Mastrobattista L, Navarro-Zaragoza J, Mancini R (2019) Development and validation of a gas chromatography–mass spectrometry method for opiates and cocaine in human bone. J Pharm Biomed Anal 164:636–641. https://doi.org/10.1016/j.jpba.2018.11.015

    Article  CAS  PubMed  Google Scholar 

  22. McGrath KK, Jenkins AJ (2009) Detection of drugs of forensic importance in postmortem bone. Am J Forensic Med Pathol 30:40–44. https://doi.org/10.1097/PAF.0b013e31818738c9

    Article  PubMed  Google Scholar 

  23. Vardakou I, Athanaselis S, Pistos C, Papadodima S, Spiliopoulou C, Moraitis K (2014) The clavicle bone as an alternative matrix in forensic toxicological analysis. J Forensic Leg Med 22:7–9. https://doi.org/10.1016/j.jflm.2013.11.012

    Article  PubMed  Google Scholar 

  24. Kojima T, Okamoto I, Miyazaki T, Chikasue F, Yashiki M, Nakamura K (1986) Detection of methamphetamine and amphetamine in a skeletonized body buried for 5 years. Forensic Sci Int 31:93–102. https://doi.org/10.1016/0379-0738(86)90193-3

    Article  CAS  PubMed  Google Scholar 

  25. Kudo K, Sugie H, Syoui N, Kurihara K, Jitsufuchi N, Imamura T, Ikeda N (1997) Detection of triazolam in skeletal remains buried for 4 years. Int J Legal Med 110:281–283. https://doi.org/10.1007/s004140050086

    Article  CAS  PubMed  Google Scholar 

  26. Cattaneo C, Mazzarelli D, Cappella A, Castoldi E, Mattia M, Poppa P, de Angelis D, Vitello A, Biehler-Gomez L (2018) A modern documented Italian identified skeletal collection of 2127 skeletons: the CAL Milano Cemetery Skeletal Collection. Forensic Sci Int 287:219e1–219e5. https://doi.org/10.1016/j.forsciint.2018.03.041

    Article  Google Scholar 

  27. Labella GF, Bousova K, Hollosi L, Arioli F (2016) Comparison between accelerated solvent extraction (ASE) with clean up in-line and quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction in honey. Int J Heal Anim Sci Food Saf 3(3927):10.13130/2283–10.13927/7018

    Google Scholar 

  28. Richter BE, Jones BA, Ezzell JL, Porter NL, Avdalovic N, Pohl C (1996) Accelerated solvent extraction: a technique for sample preparation. Anal Chem 68:1033–1039. https://doi.org/10.1021/ac9508199

    Article  CAS  Google Scholar 

  29. Mottaleb MA, Sarker SD (2012) Accelerated solvent extraction for natural products isolation. Nat Prod Isol 864:1–25. https://doi.org/10.1007/978-1-61779-624-1

    Article  Google Scholar 

  30. Group SW (2013) Scientific working group for forensic toxicology (SWGTOX) standard practices for method validation in forensic toxicology. J Anal Toxicol 37:452–474. https://doi.org/10.1093/jat/bkt054

    Article  CAS  Google Scholar 

  31. Anastasi G (2012) Trattato di anatomia umana, 4th ed

  32. Netter FH (2014) NETTER - Atlante Di Anatomia Umana, 5th edn. Elsevier Inc., Phuladelphia PA, USA

    Google Scholar 

  33. Premkumar S (2011) Biology of bone and cartilage. In: Textbook of craniofacial growth, 1st ed. Jaypee Brothers Medical Publisher (P) Ltd, New Delhi, pp 1–4

  34. Saladin S (2018) Bone tissue. In: Anatomy & physiology: the unity of form and function, 8th ed. McGraw-Hill, pp 218–219

  35. Kini U, Nandeesh BN (2012) Physiology of bone formation, remodeling, and metabolism. In: Radionuclide and hybrid bone imaging. Springer-Verlag, Berlin Heidelberg, pp 29–57

    Chapter  Google Scholar 

  36. Watterson JH, Desrosiers NA, Betit CC, Dean D, Wyman JF (2010) Relative distribution of drugs in decomposed skeletal tissue. J Anal Toxicol 34:510–515. https://doi.org/10.1093/jat/34.8.510

    Article  CAS  PubMed  Google Scholar 

  37. Watterson JH, Donohue JP, Betit CC (2012) Comparison of relative distribution of ketamine and norketamine in decomposed skeletal tissues following single and repeated exposures. J Anal Toxicol 36:429–433. https://doi.org/10.1093/jat/bks045

    Article  CAS  PubMed  Google Scholar 

  38. Rubin KM, Rubin KM, Goldberger BA, Garrett TJ (2020) Detection of chemical weapon nerve agents in bone by liquid chromatography-mass spectrometry. J Anal Toxicol 44:391–401. https://doi.org/10.1093/jat/bkz118

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaia Giordano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Gaia Giordano and Lucie Biehler-Gomez are co-first authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giordano, G., Biehler-Gomez, L., Seneci, P. et al. Detecting drugs in dry bone: a pilot study of skeletal remains with a post-mortem interval over 23 years. Int J Legal Med 135, 457–463 (2021). https://doi.org/10.1007/s00414-020-02494-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-020-02494-8

Keywords

Navigation