Skip to main content
Log in

Association of cohesin and Nipped-B with transcriptionally active regions of the Drosophila melanogaster genome

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The cohesin complex is a chromosomal component required for sister chromatid cohesion that is conserved from yeast to man. The similarly conserved Nipped-B protein is needed for cohesin to bind to chromosomes. In higher organisms, Nipped-B and cohesin regulate gene expression and development by unknown mechanisms. Using chromatin immunoprecipitation, we find that Nipped-B and cohesin bind to the same sites throughout the entire non-repetitive Drosophila genome. They preferentially bind transcribed regions and overlap with RNA polymerase II. This contrasts sharply with yeast, where cohesin binds almost exclusively between genes. Differences in cohesin and Nipped-B binding between Drosophila cell lines often correlate with differences in gene expression. For example, cohesin and Nipped-B bind the Abd-B homeobox gene in cells in which it is transcribed, but not in cells in which it is silenced. They bind to the Abd-B transcription unit and downstream regulatory region and thus could regulate both transcriptional elongation and activation. We posit that transcription facilitates cohesin binding, perhaps by unfolding chromatin, and that Nipped-B then regulates gene expression by controlling cohesin dynamics. These mechanisms are likely involved in the etiology of Cornelia de Lange syndrome, in which mutation of one copy of the NIPBL gene encoding the human Nipped-B ortholog causes diverse structural and mental birth defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akbari OS, Bousum A, Bae E, Drewell RA (2006) Unraveling cis-regulatory mechanisms at the abdominal-A and Abdominal-B genes in the Drosophila bithorax complex. Dev Biol 293:294–304

    Article  PubMed  CAS  Google Scholar 

  • Anderson DE, Losada A, Erickson HP, Hirano T (2002) Condensin and cohesin display different arm conformations with characteristic hinge angles. J Cell Biol 156:419–424

    Article  PubMed  CAS  Google Scholar 

  • Arumugam P, Gruber S, Tanaka K, Haering CH, Mechtler K, Nasmyth K (2003) ATP hydrolysis is required for cohesin's association with chromosomes. Curr Biol 13:1941–1953

    Article  PubMed  CAS  Google Scholar 

  • Bae E, Calhoun VC, Levine M, Lewis EB, Drewell RA (2002) Characterization of the intergenic RNA profile at abdominal-A and Abdominal-B in the Drosophila bithorax complex. Proc Natl Acad Sci U S A 99:16847–16852

    Article  PubMed  CAS  Google Scholar 

  • Blat Y, Kleckner N (1999) Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Cell 98:249–259

    Article  PubMed  CAS  Google Scholar 

  • Celniker SE, Wheeler DA, Kronmiller B, Carlson JW, Halpern A, Patel S, Adams M, Champe M, Dugan SP, Frise E, Hodgson A, George RA, Hoskins RA, Laverty T, Muzny DM, Nelson CR, Pacleb JM, Park S, Pfeiffer BD, Richards S, Sodergren EJ, Svirskas R, Tabor PE, Wan K, Stapleton M, Sutton GG, Venter C, Weinstock G, Scherer SE, Myers EW, Gibbs RA, Rubin GM (2002) Finishing a whole-genome shotgun: release 3 of the Drosophila melanogaster euchromatic genome sequence. Genome Biol 3:RESEARCH0079

    Article  PubMed  Google Scholar 

  • Chang CR, Wu CS, Hom Y, Gartenberg MR (2005) Targeting of cohesin by transcriptionally silent chromatin. Genes Dev 19:3031–3042

    Article  PubMed  CAS  Google Scholar 

  • Ciosk R, Shirayama M, Shevchenko A, Tanaka T, Toth A, Shevchenko A, Nasmyth K (2000) Cohesin’s binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol Cell 5:243–254

    Article  PubMed  CAS  Google Scholar 

  • Deardorff MA, Kaur M, Yaeger D, Rampuria A, Korolev S, Pie J, Gil-Rodriguez C, Arnedo M, Loeys B, Kline AD, Wilson M, Lillquist K, Siu V, Ramos FJ, Musio A, Jackson LS, Dorsett D, Krantz ID (2007) Mutations in cohesin complex members SMC3 and SMC1A cause a mild variant of Cornelia de Lange syndrome with predominant mental retardation. Am J Hum Genet 80:485–494

    Article  PubMed  CAS  Google Scholar 

  • Donze D, Adams CR, Rine J, Kamakaka RT (1999) The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes Dev 13:698–708

    PubMed  CAS  Google Scholar 

  • Dorsett D (2004) Adherin: key to the cohesin ring and Cornelia de Lange syndrome. Curr Biol 14:R834–R836

    Article  PubMed  CAS  Google Scholar 

  • Dorsett D (2007) Roles of the sister chromatid cohesion apparatus in gene expression, development, and human syndromes. Chromosoma 116:1–13

    Article  PubMed  Google Scholar 

  • Dorsett D, Eissenberg JC, Misulovin Z, Martens A, Redding B, McKim K (2005) Effects of sister chromatid cohesion proteins on cut gene expression during wing development in Drosophila. Development 132:4743–4753

    Article  PubMed  CAS  Google Scholar 

  • Drewell RA, Bae E, Burr J, Lewis EB (2002) Transcription defines the embryonic domains of cis-regulatory activity at the Drosophila bithorax complex. Proc Natl Acad Sci USA 99:16853–16858

    Article  PubMed  CAS  Google Scholar 

  • Dubey RN, Gartenberg MR (2007) A tDNA establishes cohesion of a neighboring silent chromatin domain. Genes Dev 21:2150–2160

    Article  PubMed  CAS  Google Scholar 

  • Echalier G, Ohanessian A (1970) In vitro culture of Drosophila melanogaster embryonic cells. In Vitro 6:162–172

    Article  PubMed  CAS  Google Scholar 

  • Freidkin I, Katcoff DJ (2001) Specific distribution of the Saccharomyces cerevisiae linker histone homolog HHO1p in the chromatin. Nucleic Acids Res 29:4043–4051

    PubMed  CAS  Google Scholar 

  • Gause M, Webber HA, Misulovin Z, Haller G, Rollins RA, Eissenberg JC, Bickel SE, Dorsett D (2007) Functional links between Drosophila Nipped-B and cohesin in somatic and meiotic cells. Chromosoma Oct 2; [Epub ahead of print]

  • Gillespie PJ, Hirano T (2004) Scc2 couples replication licensing to sister chromatid cohesion in Xenopus egg extracts. Curr Biol 14:1598–1603

    Article  PubMed  CAS  Google Scholar 

  • Glynn EF, Megee PC, Yu HG, Mistrot C, Unal E, Koshland DE, DeRisi JL, Gerton JL (2004) Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol 2:E259

    Article  PubMed  Google Scholar 

  • Hartman T, Stead K, Koshland D, Guacci V (2000) Pds5p is an essential chromosomal protein required for both sister chromatid cohesion and condensation in Saccharomyces cerevisiae. J Cell Biol 151:613–626

    Article  PubMed  CAS  Google Scholar 

  • Hirano T (2006) At the heart of the chromosome: SMC proteins in action. Nat Rev Mol Cell Biol 7:311–322

    Article  PubMed  CAS  Google Scholar 

  • Horsfield JA, Anagnostou SH, Hu JK, Cho KH, Geisler R, Lieschke G, Crosier KE, Crosier PS (2007) Cohesin-dependent regulation of Runx genes. Development 134:2639–2649

    PubMed  CAS  Google Scholar 

  • Huang CE, Milutinovich M, Koshland D (2005) Rings, bracelet or snaps: fashionable alternatives for Smc complexes. Philos Trans R Soc Lond B Biol Sci 360:537–542

    Article  PubMed  CAS  Google Scholar 

  • Ivanov D, Nasmyth K (2005) A topological interaction between cohesin rings and a circular minichromosome. Cell 122:849–860

    Article  PubMed  CAS  Google Scholar 

  • Ivanov D, Nasmyth K (2007) A physical assay for sister chromatid cohesion in vitro. Mol Cell 27:300–310

    Article  PubMed  CAS  Google Scholar 

  • Jackson L, Kline AD, Barr M, Koch S (1993) de Lange syndrome: a clinical review of 310 individuals. Am J Med Genet 47:940–946

    Article  PubMed  CAS  Google Scholar 

  • Kahn TG, Schwartz YB, Dellino GI, Pirrotta V (2006) Polycomb complexes and the propagation of the methylation mark at the Drosophila Ubx gene. J Biol Chem 281:29064–29075

    Article  PubMed  CAS  Google Scholar 

  • Kaur M, DeScipio C, McCallum J, Yaeger D, Devoto M, Jackson LG, Spinner NB, Krantz ID (2005) Precocious sister chromatid separation (PSCS) in Cornelia de Lange syndrome. Am J Med Genet A 138:27–31

    PubMed  Google Scholar 

  • Khetani RS, Bickel SE (2007) Regulation of meiotic cohesion and chromosome core morphogenesis during pachytene in Drosophila oocytes. J Cell Sci 120:3123–3137

    Article  PubMed  CAS  Google Scholar 

  • Krantz ID, McCallum J, DeScipio C, Kaur M, Gillis LA, Yaeger D, Jukofsky L, Wasserman N, Bottani A, Morris CA, Nowaczyk MJ, Toriello H, Bamshad MJ, Carey JC, Rappaport E, Kawauchi S, Lander AD, Calof AL, Li HH, Devoto M, Jackson LG (2004) Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B. Nat Genet 36:631–635

    Article  PubMed  CAS  Google Scholar 

  • Lengronne A, Katou Y, Mori S, Yokobayashi S, Kelly GP, Itoh T, Watanabe Y, Shirahige K, Uhlmann F (2004) Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430:573–578

    Article  PubMed  CAS  Google Scholar 

  • Ling J, Ainol L, Zhang L, Yu X, Pi W, Tuan D (2004) HS2 enhancer function is blocked by a transcriptional terminator inserted between the enhancer and the promoter. J Biol Chem 279:51704–51713

    Article  PubMed  CAS  Google Scholar 

  • Losada A (2007) Cohesin regulation: fashionable ways to wear a ring. Chromosoma 116:321–329

    Article  PubMed  CAS  Google Scholar 

  • Losada A, Yokochi T, Hirano T (2005) Functional contribution of Pds5 to cohesin-mediated cohesion in human cells and Xenopus egg extracts. J Cell Sci 118:2133–2141

    Article  PubMed  CAS  Google Scholar 

  • Maeda RK, Karch F (2006) The ABC of the BX-C: the bithorax complex explained. Development 133:1413–1422

    Article  PubMed  CAS  Google Scholar 

  • Megee PC, Mistrot C, Guacci V, Koshland D (1999) The centromeric sister chromatid cohesion site directs Mcd1p binding to adjacent sequences. Mol Cell 4:445–450

    Article  PubMed  CAS  Google Scholar 

  • Musio A, Selicorni A, Focarelli ML, Gervasini C, Milani D, Russo S, Vezzoni P, Larizza L (2006) X-linked Cornelia de Lange syndrome owing to SMC1L1 mutations. Nat Genet 38:528–530

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth K, Haering CH (2005) The structure and function of SMC and kleisin complexes. Annu Rev Biochem 74:595–648

    Article  PubMed  CAS  Google Scholar 

  • Panizza S, Tanaka T, Hochwagen A, Eisenhaber F, Nasmyth K (2000) Pds5 cooperates with cohesin in maintaining sister chromatid cohesion. Curr Biol 10:1557–1564

    Article  PubMed  CAS  Google Scholar 

  • Rollins RA, Morcillo P, Dorsett D (1999) Nipped-B, a Drosophila homologue of chromosomal adherins, participates in activation by remote enhancers in the cut and Ultrabithorax genes. Genetics 152:577–593

    PubMed  CAS  Google Scholar 

  • Rollins RA, Korom M, Aulner N, Martens A, Dorsett D (2004) Drosophila Nipped-B protein supports sister chromatid cohesion and opposes the stromalin/Scc3 cohesion factor to facilitate long-range activation of the cut gene. Mol Cell Biol 24:3100–3111

    Article  PubMed  CAS  Google Scholar 

  • Schwartz YB, Pirrotta V (2007) Polycomb silencing mechanisms and the management of genomic programmes. Nat Rev Genet 8:9–22

    Article  PubMed  CAS  Google Scholar 

  • Schwartz YB, Kahn TG, Nix DA, Li XY, Bourgon R, Biggin M, Pirrotta V (2006) Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nat Genet 38:700–705

    Article  PubMed  CAS  Google Scholar 

  • Seitan VC, Banks P, Laval S, Majid NA, Dorsett D, Rana A, Smith J, Bateman A, Krpic S, Hostert A, Rollins RA, Erdjument-Bromage H, Tempst P, Benard CY, Hekimi S, Newbury SF, Strachan T (2006) Metazoan Scc4 homologs link sister chromatid cohesion to cell and axon migration guidance. PLoS Biol 4:e242

    Article  PubMed  Google Scholar 

  • Shilatifard A (2006) Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75:243–269

    Article  PubMed  CAS  Google Scholar 

  • Stead K, Aguilar C, Hartman T, Drexel M, Meluh P, Guacci V (2003) Pds5p regulates the maintenance of sister chromatid cohesion and is sumoylated to promote the dissolution of cohesion. J Cell Biol 163:729–741

    Article  PubMed  CAS  Google Scholar 

  • Strachan T (2005) Cornelia de Lange Syndrome and the link between chromosomal function, DNA repair and developmental gene regulation. Curr Opin Genet Dev 15:258–264

    Article  PubMed  CAS  Google Scholar 

  • Sumara I, Vorlaufer E, Gieffers C, Peters BH, Peters JM (2007) Characterization of vertebrate cohesin complexes and their regulation in prophase. J Cell Biol 151:749–762

    Article  Google Scholar 

  • Takahashi TS, Yiu P, Chou MF, Gygi S, Walter JC (2004) Recruitment of Xenopus Scc2 and cohesin to chromatin requires the pre-replication complex. Nat Cell Biol 6:991–996

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Cosma MP, Wirth K, Nasmyth K (1999) Identification of cohesin association sites at centromeres and along chromosome arms. Cell 98:847–858

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Hao Z, Kai M, Okayama H (2001) Establishment and maintenance of sister chromatid cohesion in fission yeast by a unique mechanism. EMBO J 20:5779–5790

    Article  PubMed  CAS  Google Scholar 

  • Tomonaga T, Nagao K, Kawasaki Y, Furuya K, Murakami A, Morishita J, Yuasa T, Sutani T, Kearsey SE, Uhlmann F, Nasmyth K, Yanagida M (2000) Characterization of fission yeast cohesin: essential anaphase proteolysis of Rad21 phosphorylated in the S phase. Genes Dev 14:2757–2770

    Article  PubMed  CAS  Google Scholar 

  • Tonkin ET, Wang TJ, Lisgo S, Bamshad MJ, Strachan T (2004) NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome. Nat Genet 36:636–641

    Article  PubMed  CAS  Google Scholar 

  • Ui K, Nishihara S, Sakuma M, Togashi S, Ueda R, Miyata Y, Miyake T (1994) Newly established cell lines from Drosophila larval CNS express neural specific characteristics. In Vitro Cell Dev Biol Anim 30A:209–216

    Article  PubMed  CAS  Google Scholar 

  • Valdeolmillos A, Rufas JS, Suja JA, Vass S, Heck MM, Martinez A C, Barbero JL (2004) Drosophila cohesins DSA1 and Drad21 persist and colocalize along the centromeric heterochromatin during mitosis. Biol Cell 96:457–462

    Article  PubMed  CAS  Google Scholar 

  • Vrouwe MG, Elghalbzouri-Maghrani E, Meijers M, Schouten P, Godthelp BC, Bhuiyan ZA, Redeker EJ, Mannens MM, Mullenders LH, Pastink A, Darroudi F (2007) Increased DNA damage sensitivity of Cornelia de Lange syndrome cells: evidence for impaired recombinational repair. Hum Mol 16:1478–1487

    Article  CAS  Google Scholar 

  • Warren WD, Steffensen S, Lin E, Coelho P, Loupart M, Cobbe N, Lee JY, McKay MJ, Orr-Weaver T, Heck MM, Sunkel CE (2000) The Drosophila RAD21 cohesin persists at the centromere region in mitosis. Curr Biol 10:1463–1466

    Article  PubMed  CAS  Google Scholar 

  • Watrin E, Schleiffer A, Tanaka K, Eisenhaber F, Nasmyth K, Peters JM (2006) Human Scc4 is required for cohesin binding to chromatin, sister-chromatid cohesion, and mitotic progression. Curr Biol 16:863–874

    Article  PubMed  CAS  Google Scholar 

  • Weber SA, Gerton JL, Polancic JE, DeRisi JL, Koshland D, Megee PC (2004) The kinetochore is an enhancer of pericentric cohesin binding. PLoS Biol 2:E260

    Article  PubMed  Google Scholar 

  • Zhang B, Jain S, Song H, Fu M, Heuckeroth RO, Erlich JM, Jay PY, Milbrandt J (2007) Mice lacking sister chromatid cohesion protein PDS5B exhibit developmental abnormalities reminiscent of Cornelia de Lange syndrome. Development 134:3191–201

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Dean A (2004) An insulator blocks spreading of histone acetylation and interferes with RNA polymerase II transfer between an enhancer and gene. Nucleic Acids Res 32:4903–4919

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Cheri van de Bunte and Joel Eissenberg for comments on the manuscript and Jumin Zhou for helpful discussions. Kc167 and ML-DmBG3 cells were obtained from the Drosophila Genomics Resource Center at Indiana University. This work was supported by NIH grants R01GM055683 (DD), R01GM070444 (MDB), P01HD052860 (DD, Project III Director; Ian Krantz, PI), and March of Dimes FY05-103 (DD). Work at Lawrence Berkeley National Laboratory was performed under Department of Energy contract DE-AC02-05CH11231. The microarray CEL files have been deposited with the NCBI GEO database under accession no. GSE9248. Processed ChIP data files are available upon request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale Dorsett.

Additional information

Communicated by F. Uhlmann

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Genes that bind cohesin within annotated transcription units (DOC 648 KB)

Supplementary Fig. 1

Binding of Nipped-B and cohesin to transcribed genes. The top panel shows the binding of RNA polymerase II (PolII), Nipped-B and cohesin subunits to the expressed Act5c actin gene in Sg4, Kc, and ML-DmBG3 (BG3) cells. The bottom shows the binding of PolII, Nipped-B, and cohesin to the Kr-h1 gene in Sg4 cells and lack of binding to the same gene in BG3 cells. The Sg4 tracks are in black, the Kc track is red, and the BG3 tracks are blue. The trimmed mean log2 IP/control values are plotted on a scale of −0.5 to 3.0, except for the Sg4 PolII track, which is on a scale of −0.5 to 3.5 (GIF 65 KB).

High resolution image file (TIF 9.82 MB).

Supplementary Fig. 2

Nipped-B and cohesin bind preferentially to 5′ UTRs and introns. The plots compare the positions of predicted Nipped-B and SA peaks to annotated Drosophila genome features (Berkeley Drosophila Genome Project, April 2004 release; Celniker et al. 2002). Nipped-B and SA peaks predicted with a 25% false discovery rate using the TiMAT program are taken in rank order starting with the most significant from left to right in sliding windows of 500 peaks. For each window, the fraction of peaks that are in intergenic sequences, introns, coding sequences, and 3′ and 5′ UTRs are calculated. The color-coded straight lines labeled on the right show the fraction of the non-repetitive genome that corresponds to each genome feature. These data show that the largest fraction of the highest-ranked SA and Nipped-B peaks are in introns, followed by intergenic, 5′ UTR, coding, and 3′ UTR sequences. Relative to the fraction of the genome, SA cohesin and Nipped-B binding sites are most over-represented in 5′ UTRs, followed by introns, and are most under-represented in coding sequences, followed by 3′ UTRs and intergenic sequences (see Table 2). The top half of the peaks was used to calculate the binding preference ratios in Table 2 (GIF 65 KB).

High resolution image file (TIF 11.3 MB).

Supplementary Fig. 3

Nipped-B and cohesin binding peaks at transcription start sites. The average enrichment for Nipped-B and the SA cohesin subunit for microarray features is plotted for all genes that overlap cohesin binding regions in Sg4 cells from 10 kb upstream of the transcription start site (−10,000 bp) to 10 kb downstream of the transcription start site (10,000 bp) The IP to control ratios for all the microarray features in 500-bp windows were averaged. On average, both Nipped-B and SA enrichment are highest around the transcription start site, which is consistent with the high frequency of Nipped-B and cohesin peaks in 5′ UTRs (Supplementary Fig. 2). There is also a slight skewing towards the transcribed region, which is consistent with the slight preference of cohesin for introns seen in Supplementary Fig. 2, but does not explain the low occurrence of cohesin peaks in coding sequences (GIF 21.1 KB).

High resolution image file (TIF 4.16 MB).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misulovin, Z., Schwartz, Y.B., Li, XY. et al. Association of cohesin and Nipped-B with transcriptionally active regions of the Drosophila melanogaster genome. Chromosoma 117, 89–102 (2008). https://doi.org/10.1007/s00412-007-0129-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-007-0129-1

Keywords

Navigation