Skip to main content
Log in

South-to-north pyroxenite–peridotite source variation correlated with an OIB-type to arc-type enrichment of magmas from the Payenia backarc of the Andean Southern Volcanic Zone (SVZ)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

New high-precision minor element analysis of the most magnesian olivine cores (Fo85–88) in fifteen high-MgO (Mg#66–74) alkali basalts or trachybasalts from the Quaternary backarc volcanic province, Payenia, of the Andean Southern Volcanic Zone in Argentina displays a clear north-to-south decrease in Mn/Feol. This is interpreted as the transition from mainly peridotite-derived melts in the north to mainly pyroxenite-derived melts in the south. The peridotite–pyroxenite source variation correlates with a transition of rock compositions from arc-type to OIB-type trace element signatures, where samples from the central part of the province are intermediate. The southernmost rocks have, e.g., relatively low La/Nb, Th/Nb and Th/La ratios as well as high Nb/U, Ce/Pb, Ba/Th and Eu/Eu* = 1.08. The northern samples are characterized by the opposite and have Eu/Eu* down to 0.86. Several incompatible trace element ratios in the rocks correlate with Mn/Feol and also reflect mixing of two geochemically distinct mantle sources. The peridotite melt end-member carries an arc signature that cannot solely be explained by fluid enrichment since these melts have relatively low Eu/Eu*, Ba/Th and high Th/La ratios, which suggest a component of upper continental crust (UCC) in the metasomatizing agent of the northern mantle. However, the addition to the mantle source of crustal materials or varying oxidation state cannot explain the variation in Mn and Mn/Fe of the melts and olivines along Payenia. Instead, the correlation between Mn/Feol and whole-rock (wr) trace element compositions is evidence of two-component mixing of melts derived from peridotite mantle source enriched by slab fluids and UCC melts and a pyroxenite mantle source with an EM1-type trace element signature. Very low Ca/Fe ratios (~1.1) in the olivines of the peridotite melt component and lower calculated partition coefficients for Ca in olivine for these samples are suggested to be caused by higher H2O contents in the magmas derived from subduction zone enriched mantle. Well-correlated Mn/Fe ratios in the wr and primitive olivines demonstrate that the Mn/Fewr of these basalts that only fractionated olivine and chromite reflects the Mn/Fe of the primitive melts and can be used as a proxy for the amount of pyroxenite melt in the magmas. Using Mn/Fewr for a large dataset of primitive Payenia rocks, we show that decreasing Mn/Fewr is correlated with decreasing Mn and increasing Zn/Mn as expected for pyroxenite melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Beattie P, Ford C, Russell D (1991) Partition coefficients for olivine-melt and orthopyroxene-melt systems. Contrib Miner Petrol 109:212–224

    Article  Google Scholar 

  • Bertotto GW, Cingolani CA, Bjerg EA (2009) Geochemical variations in Cenozoic backarc basalts at the border of La Pampa and Mendoza provinces, Argentina. J S Am Earth Sci 28:360–373

    Article  Google Scholar 

  • Cahill TA, Isacks BL (1992) Seismicity and shape of the subducted Nazca plate. J Geophys Res 97(B12):17503–17529. doi:10.1029/92JB00493

    Article  Google Scholar 

  • Davis FA, Hirschmann MM, Humayun M (2011) The composition of the incipient partial melt of garnet peridotite at 3 GPa and the origin of OIB. Earth Planet Sci Lett 308:380–390. doi:10.1016/j.epsl.2011.06.008

    Article  Google Scholar 

  • Davis FA, Humayun M, Hirschmann MM, Cooper RS (2013) Experimentally determined mineral/melt partitioning of first-row transition elements (FRTE) during partial melting of peridotite at 3 GPa. Geochim Cosmochim Acta 104:232–260

    Article  Google Scholar 

  • Dyhr CT, Holm PM, Llabías EJ, Scherstén A (2013a) Subduction controls on Miocene back-arc lavas from Sierra de Huantraico and La Matancilla and new 40Ar/39Ar dating from the Mendoza Region, Argentina. Lithos 179:67–83. doi:10.1016/j.lithos.2013.08.007

    Article  Google Scholar 

  • Dyhr CT, Holm PM, Llambías EJ (2013b) Geochemical constraints on the relationship between the Miocene-Pliocene volcanism and tectonics in the Mendoza Region, Argentina; new insights from 40Ar/39Ar dating, Sr–Nd–Pb isotopes and trace elements. J Volcanol Geotherm Res 266:50–68. doi:10.1016/j.jvolgeores.2013.08.005

    Article  Google Scholar 

  • Evans KA, Elburg MA, Kamenetsky VS (2012) Oxidation state of subarc mantle. Geology 40:783–786. doi:10.1130/G33037.1

    Article  Google Scholar 

  • Feig ST, Koepke J, Snow JE (2006) Effect of water on tholeiitic basalt phase equilibria: an experimental study under oxidizing conditions. Contrib Miner Petrol 152:611–638. doi:10.1007/s00410-006-0123-2

    Article  Google Scholar 

  • Foley SF, Prelevic D, Rehfeldt T, Jacob DE (2013) Minor and trace elements in olivines as probes into early igneous and mantle melting processes. Earth Planet Sci Lett 363:181–191. doi:10.1016/j.epsl.2012.11.025

    Article  Google Scholar 

  • Folguera A, Naranjo JA, Orihashi Y, Sumino H, Nagao K, Polanco E, Ramos VA (2009) Retroarc volcanism in the northern San Rafael Block (34°–35°30′S), southern Central Andes: occurrence, age and tectonic setting. J Volcanol Geoth Res 186:169–185. doi:10.1016/j.jvolgeores.2009.06.012

    Article  Google Scholar 

  • Gavrilenko M, Ozerov A, Kyle PR, Carr MJ, Nikulin A, Vidito C, Danyushevsky L (2016) Abrupt transition from fractional crystallization to magma mixing at Gorely volcano (Kamchatka) after caldera collapse. Bull Volcanol 78:47

    Article  Google Scholar 

  • Grove LT, Chatterjee N, Parman WS, Médard E (2006) The influence of H2O on mantle wedge melting. Earth Planet Sci Lett 249:74–89. doi:10.1016/j.epsl.2006.06.043

    Article  Google Scholar 

  • Gudnason J, Holm PM, Søager N, Llambías EJ (2012) Geochronology of the late Pliocene to recent volcanic activity in the Payenia back-arc volcanic province, Mendoza. Argetina J S Am Earth Sci 37:191–201

    Article  Google Scholar 

  • Herzberg C (2006) Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano. Nature 444:605–609. doi:10.1038/nature05254

    Article  Google Scholar 

  • Herzberg C (2011) Identification of source lithology in the Hawaiian and Canary Islands: implications for origins. J Petrol 52:113–146. doi:10.1093/petrology/egq075

    Article  Google Scholar 

  • Herzberg C, O’Hara MJ (2002) Plume-associated ultramafic magmas of phanerozoic age. J Petrol 43:1857–1883. doi:10.1093/petrology/43.10.1857

    Article  Google Scholar 

  • Hofmann AW, White WM (1982) Mantle plumes from ancient oceanic crust. Earth Planet Sci Lett 57:421–436

    Article  Google Scholar 

  • Holm PM, Søager N, Dyhr CT, Nielsen MR (2014) Enrichments of the mantle sources beneath the Southern Volcanic Zone (Andes) by fluids and melts derived from abraded upper continental crust. Contrib Miner Petrol 167:1004. doi:10.1007/s00410-014-1004-8

    Article  Google Scholar 

  • Holm PM, Søager N, Alfastsen M, Bertotto GW (2016) Subduction zone mantle enrichment by fluids and Zr-depleted crustal melts as indicated by backarc basalts of the Southern Volcanic Zone, Argentina. Lithos 262:135–152. doi:10.1016/j.lithos.2016.06.029

    Article  Google Scholar 

  • Humayun M, Qin LP, Norman MD (2004) Geochemical evidence for excess iron in the mantle beneath Hawaii. Science 306:91–94. doi:10.1126/science.1101050

    Article  Google Scholar 

  • Jackson G, Dasgupta R (2008) Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts. Earth Planet Sci Lett 276:175–186. doi:10.1016/j.epsl.2008.09.023

    Article  Google Scholar 

  • Jackson MG, Hart SR, Koppers AAP, Hubert S (2007) The return of subducted continental crust in Samoan lavas. Nature 448:684–687. doi:10.1038/nature06048

    Article  Google Scholar 

  • Jacques G, Hoernle K, Gill J, Hauff F, Wehrmann H, Garbe-Schönberg D, van den Bogaard P, Bindeman I, Lara LE (2013) Across-arc geochemical variations in the Southern Volcanic Zone, Chile (34.5°S–38.0°S): constraints on mantle wedge and slab input compositions. Geochem Cosmochem Acta 123:218–243. doi:10.1016/j.gca.2013.05.016

    Article  Google Scholar 

  • Jochum KP, Nehring F (2006) GeoReM preferred values. Max-Plank-Institut für Chemie, 11/2006. http://georem.mpch-mainz.gwdg.de

  • Jurewicz AJG, Watson EB (1988) Cations in olivine: 1. Calcium partitioning and calcium-magnesium distribution between olivines and coexisting melts, with Petrologic Applications. Contrib Miner Petrol 99:176–185

    Article  Google Scholar 

  • Kamenetsky VS, Elburg M, Arculus R, Thomas R (2006) Magmatic origin of low-Ca olivine in subduction-related magmas: co-existence of contrasting magmas. Chem Geol 233:346–357

    Article  Google Scholar 

  • Kay SM, Copeland P (2006) Early to middle Miocene backarc magmas of the Neuquén basin: geochemical consequences of slab shallowing and the westward drift of South America. In: Kay SM, Ramos VA (eds) Evolution of an andean margin: a tectonic and magmatic view from the andes to the Neuquén Basin (35°S–39°S Lat.). Geol Soc Am Spec Pap 407: 185–213

  • Kay RW, Kay SM (1993) Delamination and delamination magmatism. Tectonophysics 219:177–189

    Article  Google Scholar 

  • Kay SM, Mpodozis C (2002) Magmatism as a probe to the Neogene shallowing of the Nazca plate beneath the modern Chilean flatslab. J S Am Earth Sci 15:39–57. doi:10.1016/S0895-9811(02)00005-6

    Article  Google Scholar 

  • Kay SM, Gorring M, Ramos VA (2004) Magmatic sources, setting, and causes of Eocene to Recent Patagonian plateau magmatism (36°S–52°S latitude). Revista de la Asociación Geológica Argentina 59:556–568

    Google Scholar 

  • Kay SM, Godoy E, Kurtz A (2005) Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes. Geol Soc Am Bull 117(1–2):67–88

    Article  Google Scholar 

  • Kay SM, Burns WM, Copeland P, Mancilla O (2006a) Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the subduction zone under the northern Neuquén Basin. In Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the andes to the Neuquén Basin (35°S–39°S lat.) Geol Soc Am Spec Pap 407: 19–60

  • Kay SM, Mancilla O, Copeland P (2006b) Evolution of the late Miocene Chachahuén volcanic complex at 37°S over a transient shallow subduction zone under the Neuquén Andes. Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39°S). Geol Soc Am Spec Pap 407:215–246

    Google Scholar 

  • Kay SM, Jones HA, Kay RW (2013) Origin of tertiary to recent EM- and subduction-like chemical and isotopic signatures in Auca Mahuida region (37°S–38°S) and other Patagonian plateau lavas. Contrib Miner Petrol 166:165–192. doi:10.1007/s00410-013-0870-9

    Article  Google Scholar 

  • Kessel R, Schmidt MW, Ulmer P, Pettke T (2005) Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437:724–727. doi:10.1038/nature03971

    Article  Google Scholar 

  • Kogiso T, Tatsumi Y, Nakano S (1997) Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts. Earth Planet Sci Lett 148:193–205. doi:10.1016/S0012-821X(97)00018-6

    Article  Google Scholar 

  • Laubier M, Grove TL, Langmuir CH (2014) Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: an experimental and laser ICP-MS study with application to the oxidation state of mantle source regions. Earth Planet Sci Lett 392:265–278

    Article  Google Scholar 

  • le Roux PJ, le Roex AP, Schilling JG (2002) MORB melting processes beneath the southern Mid-Atlantic Ridge (40°S–55°S): a role for mantle plume-derived pyroxenite. Contrib Miner Petrol 144:206–229

    Article  Google Scholar 

  • Le Roux V, Lee CTA, Turner SJ (2010) Zn/Fe systematics in mafic and ultramafic systems: implications for detecting major element heterogeneities in the Earth’s mantle. Geochim Cosmochim Acta 74:2779–2796. doi:10.1016/j.gca.2010.02.004

    Article  Google Scholar 

  • le Roux VL, Dasgupta R, Lee C-T (2011) Mineralogical heterogeneities in the Earth’s mantle: constraints from Mn Co, Ni and Zn partitioning during partial melting: earth Planet. Sci Lett 307:395–408

    Google Scholar 

  • Lee C-T, Cheng X, Horodyskyj U (2006) The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: insights from the Sierra Nevada, California. Contrib Miner Petrol 151:222–242. doi:10.1007/s00410-005-0056-1

    Article  Google Scholar 

  • Libourel G (1999) Systematics of calcium partitioning between olivine and silicate melt: implications for melt structure and calcium content of magmatic olivines. Contrib Miner Petrol 136:63–80

    Article  Google Scholar 

  • Litvak VD, Spagnuolo MG, Folguera A, Poma S, Jones RE, Ramos VA (2015) Late Cenozoic calc-alkaline volcanism over the Payenia shallow subduction zone, South-Central Andean back-arc 34°30′–37°S). Argentina J S Am Earth Sci 64:365–380

    Article  Google Scholar 

  • Lucassen F, Wiedicke M, Franz G (2010) Complete recycling of a magmatic arc: evidence from chemical and isotopic composition of Quaternary trench sediments in Chile (36°S–40°S). Int J Earth Sci 99:687–701. doi:10.1007/s00531-008-0410-4

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120(3–4):223–253. doi:10.1016/0009-2541(94)00140-4

    Article  Google Scholar 

  • Mysen B (2007) Partitioning of calcium, magnesium, and transition metals between olivine and melt governed by the structure of the silicate melt at ambient pressure. Am Miner 92:844–862. doi:10.2138/am.2007.2260

    Article  Google Scholar 

  • Plank T (2005) Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. J Petrol 46:921–944. doi:10.1093/petrology/egi005

    Article  Google Scholar 

  • Portnyagin M, Hoernle K, Plechov P, Mironov N, Khubunaya S (2007) Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc. Earth Planet Sci Lett 255(1–2):53–69. doi:10.1016/j.epsl.2006.12.005

    Article  Google Scholar 

  • Quidelleur X, Carlut J, Tchilinguirian P, Germa A, Gillot P-Y (2009) Paleomagnetic directions from mid-latitude sites in the southern hemisphere (Argentina): contribution to time averaged field models. Phys Earth Planet Inter 172:199–209. doi:10.1016/j.pepi.2008.09.012

    Article  Google Scholar 

  • Ramos VA, Folguera A (2011) Payenia volcanic province in the Southern Andes: an appraisal of an exceptional quaternary tectonic setting. J Volcanol Geotherm Res 201:53–64. doi:10.1016/j.jvolgeores.2010.09.008

    Article  Google Scholar 

  • Ramos VA, Kay SM (2006) Overview of the tectonic evolution of the southern Central Andes of Mendoza and Neuquén (35°S–39°S latitude). Geol Soc Am Spec Pap 407:1–17

    Google Scholar 

  • Roeder LP, Emslie FR (1970) Olivine-liquid equilibrium. Contrib Miner Petrol 29:275–289. doi:10.1007/BF00371276

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Carlson RW, Holland HD, Turekian KK (eds) Treatise on geochemistry: the crust. Elsevier, Oxford, pp 1–64

    Chapter  Google Scholar 

  • Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst 5:5. doi:10.1029/2003GC000597

    Article  Google Scholar 

  • Scholl DW, von Huene R, Vallier TL, Howell DG (1980) Sedimentary masses and concepts about tectonic processes at underthrust ocean margins. Geology 8:564–568

    Article  Google Scholar 

  • Søager N, Holm PM (2013) Melt-peridotite reactions in upwelling eclogite bodies: constraints from EM1-type alkaline basalts in Payenia, Argentina. Chem Geol 360–361:204–219. doi:10.1016/j.chemgeo.2013.10.024

    Article  Google Scholar 

  • Søager N, Holm PM, Llambías EJ (2013) Payenia volcanic province, southern Mendoza, Argentina: OIB mantle upwelling in a backarc environment. Chem Geol 349–350:36–53. doi:10.1016/j.chemgeo.2013.04.007

    Article  Google Scholar 

  • Søager N, Holm PM, Thirlwall MF (2015a) Sr, Nd, Pb and Hf isotopic constraints on mantle sources and crustal contaminants in the Payenia volcanic province, Argentina. Lithos 212–215:368–378. doi:10.1016/j.lithos.2014.11.026

    Article  Google Scholar 

  • Søager N, Portnyagin M, Hoernle K, Holm PM, Hauff F, Garbe-schönberg D (2015b) Olivine major and trace element compositions in Southern Payenia Basalts, Argentina: evidence for pyroxenite-peridotite melt mixing in a back-arc setting. J Petrol 56(8):1495–1518. doi:10.1093/petrology/egv043

    Article  Google Scholar 

  • Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature 434:590–597. doi:10.1038/nature03411

    Article  Google Scholar 

  • Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung S-L, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM, Tekley M (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316:412–417. doi:10.1126/science.1138113

    Article  Google Scholar 

  • Stern CR (1991) Role of subduction erosion in the generation of the Andean magmas. Geology 19:78–81

    Article  Google Scholar 

  • Stern CR (2011) Subduction erosion: rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust. Gondwana Res 20:284–308. doi:10.1016/j.gr.2011.03.006

    Article  Google Scholar 

  • Stracke A, Hofmann AW, Hart SR (2005) FOZO, HIMU, and the rest of the mantle-zoo. Geochem Geophys Geosyst 6:5. doi:10.1029/2004GC000824

    Article  Google Scholar 

  • Straub SM, LaGatta AB, Martin-Del Pozzo AL, Langmuir CH (2008) Evidence from high-Ni olivines for a hybridized peridotite/pyroxenite source for orogenic andesites the Central Mexican Volcanic Belt. Geochem Geophys Geosyst 9:3. doi:10.1029/2007GC001583

    Article  Google Scholar 

  • Straub SM, Gomez-Tuena A, Stuart FM, Zellmer GF, Espinasa-Parena R, Cai Y, Lizuka Y (2011) Formation of hybrid arc andesites beneath thick continental crust. Earth Planet Sci Lett 303:337–347. doi:10.1016/j.epsl.2011.01.013

    Article  Google Scholar 

  • Straub SM, Zellmer GF, Gomez-Tuena AG, Espinasa-Parena R, Pozzo Martin-del, Stuart FM, Langmuir CH (2014) A genetic link between silicic slab components and calc-alkaline arc volcanism in central Mexico. Geol Soc Lond Spec Publ 385:31–64

    Article  Google Scholar 

  • von Huene R, Scholl DW (1991) Observations at convergent margins concerning sediment subduction, subduction erosion and the growth of continental crust. Rev Geophys 29(3):279–316

    Article  Google Scholar 

  • Walter MJ (1998) Melting of Garnet peridotite and the origin of Komatiite and depleted lithosphere. J Petrol 39(1):29–60. doi:10.1093/petroj/39.1.29

    Article  Google Scholar 

  • Wehrmann H, Hoernle K, Jacques G, Garbe-Schönberg D, Schumann K, Mahlke J, Lara LE (2014) Volatile (sulphur and chlorine), major, and trace element geochemistry of mafic to intermediate tephras from the Chilean Southern Volcanic Zone (33°S–43°S). Int J Earth Sci (Geol Rundsch) 103:1945–1962

    Article  Google Scholar 

  • Willbold M, Stracke A (2006) Trace element composition of mantle end-members: implications for recycling of oceanic and upper and lower continental crust. Geochem Geophys Geosyst 7:4. doi:10.1029/2005GC001005

    Article  Google Scholar 

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72. doi:10.1016/j.epsl.2004.12.005

    Article  Google Scholar 

Download references

Acknowledgements

We are very thankful to Alfons Berger for help with the Electron Microprobe setup and carbon coating. Many thanks go to Mads Alfastsen for discussions and partnership during field work. Also, thanks go to Charlotte Thorup Dyhr and Majken Djurhuus Poulsen for many fruitful discussions. The laboratory work with the ICP-MS analyses by J. Kystol (GEUS) is very much appreciated. We are thankful for the constructive comments by Suzanne M. Kay and an anonymous reviewer. We greatly acknowledge the support to P.M. Holm from the Danish Research Council for Nature and Universe Grant No. 272-07-0514 and the Carlsberg Foundation Grant No. 2010_01_0833 and to N. Søager from the Danish Research Council for Nature and Universe Grant No. 0602-02528B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederik Ejvang Brandt.

Additional information

Communicated by Timothy L. Grove.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandt, F.E., Holm, P.M. & Søager, N. South-to-north pyroxenite–peridotite source variation correlated with an OIB-type to arc-type enrichment of magmas from the Payenia backarc of the Andean Southern Volcanic Zone (SVZ). Contrib Mineral Petrol 172, 1 (2017). https://doi.org/10.1007/s00410-016-1318-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-016-1318-9

Keywords

Navigation