Skip to main content

Advertisement

Log in

Amphibole in alkaline basalts from intraplate settings: implications for the petrogenesis of alkaline lavas from the metasomatised lithospheric mantle

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Kaersutite to pargasite phenocrysts from Tertiary alkali basalts (Rhön, Central European Province, Germany) yield new high-precision 40Ar/39Ar ages of 24.0–24.1 Ma. Major and trace element compositions demonstrate that these high-TiO2 (4–7 wt%) amphiboles are in equilibrium with their host rock. Chemically, these amphibole phenocrysts resemble amphibole from magmatic veins in upper mantle rocks but differ from disseminated amphibole from peridotite. Most amphiboles have similar isotope characteristics to their alkaline basaltic host rocks (87Sr/86Sr24 = 0.7035–0.736, εNd24 = +3.8–+4.0, 206Pb/204Pb24 = 19.21–19.37, 207Pb/204Pb24 = 15.58–15.62, 208Pb/204Pb24 = 38.95–39.16), but two samples show contrasting isotopic compositions (εNd24 = −4.0 and −2.9; 206Pb/204Pb24 = 17.08 and 18.11; 207Pb/204Pb24 = 15.51 and 15.58; 208Pb/204Pb24 = 37.41 and 37.99), indicating involvement of an ancient crust-derived component during melting. The O isotopic composition of the amphibole phenocrysts ranges from 5.4 to 7.5 ‰, reflecting O isotope heterogeneity of the upper mantle sources. The contrasting isotopic composition of amphibole and host rock pairs furthermore indicates that phenocrysts record the early stages of the volcanic history of the Rhön volcanic field on a regional scale and at a different depth within the lithospheric mantle. Temperature and pressure estimates range from 1,010 and 1,080 °C and 0.7 and 1.0 GPa and are compatible with the experimental results on the stability of amphibole in alkaline rocks derived from the upper mantle. Geochemistry of major and trace elements and isotopic compositions shows that igneous amphibole from alkali basalts may preserve isotope heterogeneities suggesting that they sample heterogeneous upper mantle lithologies on a small scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adam J, Green T (2006) Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour. Contrib Mineral Petrol 152:1–17. doi:10.1007/s00410-006-0085-4

    Article  Google Scholar 

  • Asprey LB (1976) The preparation of very pure fluorine gas. J Fluor Chem 7:359–361. doi:10.1016/S0022-1139(00)84009-9

    Article  Google Scholar 

  • Babuška V, Plomerová J (1988) Subcrustal continental lithosphere: a model of its thickness and anisotropic structure. Phys Earth Plan Int 51:130–132. doi:10.1016/0031-9201(88)90033-7

    Article  Google Scholar 

  • Babuška V, Plomerová J (2006) European mantle lithosphere assembled from rigid microplates with inherited seismic anisotropy. Phys Earth Plan Int 158:264–280. doi:10.1016/j.pepi.2006.01.010

    Article  Google Scholar 

  • Ben Othman D, Tilton G, Menzies M (1990) Pb, Nd and Sr isotopic investigations of kaersutite and clinopyroxene from ultramafic nodules, and their host basalts: The nature of the subcontinental mantle. Geochim Cosmo Act 54:3449–3460. doi:10.1016/0016-7037(90)90297-X

    Article  Google Scholar 

  • Blusztajn J, Hart SR (1989) Sr, Nd, and Pb isotopic character of Tertiary basalts from southwest Poland. Geochim Cosmo Act 53:2689–2696. doi:10.1016/0016-7037(89)90140-3

    Article  Google Scholar 

  • Bogaard PJF, Wörner G (2003) Petrogenesis of basanitic to tholeiitic volcanic rocks from the Miocene Vogelsberg, Central Germany. J Petrol 44:569–602. doi:10.1093/petrology/44.3.569

    Article  Google Scholar 

  • Bottazzi P, Tiepolo M, Vannucci R, Zanetti A, Brumm R, Foley SF, Oberti R (1999) Distinct site preferences for heavy and light REE in amphibole and the prediction of Amph/LDREE. Contrib Mineral Petrol 137:35–45. doi:10.1007/s004100050580

    Article  Google Scholar 

  • Cebriá JM, Wilson M (1995) Cenozoic mafic magmatism in Western/Central Europe: a common European asthenospheric reservoir? Terra Nova. Abstracts Supplement 7:162

    Google Scholar 

  • Dasgupta R, Hirschmann MM, Stalker K (2006) Immiscible transition from carbonate-rich to silicate-rich melts in the 3 GPa melting interval of eclogite + CO2 and genesis of silica-undersaturated ocean island lavas. J Petrol 47:647–671. doi:10.1093/petrology/egi088

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM, Smith ND (2007) Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts. J Petrol 48:2093–2124. doi:10.1093/petrology/egm053

    Article  Google Scholar 

  • Dobosi G, Downes H, Mattey D, Embey-Isztin A (1998) Oxygen isotope ratios of phenocrysts from alkali basalts of the Pannonian basin: Evidence for an O-isotopically homogeneous upper mantle beneath a subduction-influenced area. Lithos 42:213–223. doi:10.1016/S0024-4937(97)00043-1

    Article  Google Scholar 

  • Downes H, Bodinier JL, Thirlwall MF, Lorand JP, Fabries J (1991) REE and Sr-Nd isotopic geochemistry of Eastern Pyrenean peridotite massifs: Sub-continental lithospheric mantle modified by continental magmatism. J Petrol Spec Vol: 97–115. doi: 10.1093/petrology/Special_Volume.2.97

  • Duda A, Schmincke HU (1985) Polybaric differentiation of alkali basaltic magmas: evidence from green-core clinopyroxenes (Eifel, FRG). Contrib Mineral Petrol 91:340–353. doi:10.1007/BF00374690

    Article  Google Scholar 

  • Foley S (1991) High-pressure stability of the fluor- and hydroxy-endmembers of pargasite and K-richterite. Geochim Cosmo Act 55:2689–2694. doi:10.1016/0016-7037(91)90386-J

    Article  Google Scholar 

  • Foley S (1992) Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos 28:435–453. doi:10.1016/0024-4937(92)90018-T

    Article  Google Scholar 

  • Francis D, Ludden J (1995) The signature of amphibole in mafic alkaline lavas, a study in the Northern Canadian Cordillera. J Petrol 36:1171–1191. doi:10.1093/petrology/36.5.1171

    Article  Google Scholar 

  • Freerk-Parpatt M (1990) Geochemie Amphibol-führender Nephelinbasalte und Alkaliolivinbasalte aus der Rhön. University Göttingen, PhD-thesis

    Google Scholar 

  • Gehler A, Tütken T, Pack A (2012) Oxygen and carbon isotope variations in a modern rodent community: implications for palaeoenvironmental reconstructions. PLoS ONE 7(11):e49531. doi:10.1371/journal.pone.0049531

    Article  Google Scholar 

  • Goes S, Spakman W, Bijwaard H (1999) A lower mantle source for Central European Volcanism. Science 286:1928–1931. doi:10.1126/science.286 5446.1928

    Article  Google Scholar 

  • Granet M, Wilson M, Achauer U (1995) Imaging a mantle plume beneath the French Massif Central. Earth Planet Sci Lett 136:281–296. doi:10.1016/0012-821X(95)00174-B

    Article  Google Scholar 

  • Green DH, Hibberson WO, Kovacs I, Rosenthal A (2010) Water and its influence on the lithosphere-asthenosphere boundary. Nature 467:448–451. doi:10.1038/nature09369

    Article  Google Scholar 

  • Griffin W, Murthy VR (1969) Distribution of K, Rb, Sr and Ba in some minerals relevant to basalt genesis. Geochim Cosmo Act 33:1389–1414. doi:10.1016/0016-7037(69)90181-1

    Article  Google Scholar 

  • Haase KM, Goldschmidt B, Garbe-Schönberg CD (2004) Petrogenesis of Tertiary continental intra-plate lavas from the Westerwald region, Germany. J Petrol 45:883–905. doi:10.1093/petrology/egg115

    Article  Google Scholar 

  • Harmon RS, Hoefs J (1995) Oxygen isotope heterogeneity of the mantle deduced from global 18O systematics of basalts from different geotectonic settings. Contrib Mineral Petrol 120:95–114. doi:10.1007/BF00311010

    Article  Google Scholar 

  • Hawkesworth CJ, Gallagher K (1993) Mantle hotspots, plumes and regional tectonics as causes of intraplate magmatism. Terra Nova 5:552–559. doi:10.1111/j.1365-3121.1993.tb00304.x

    Article  Google Scholar 

  • Hawthorne FC, Oberti R, Harlow GE, Maresch WV, Martin RF, Schumacher JC, Welch MD (2012) Nomenclature of the amphibole supergroup. Am Mineral 97:2031–2048. doi:10.2138/am 2012.4276

    Article  Google Scholar 

  • Hegner E, Vennemann TW (1997) Role of fluids in the origin of Tertiary European intraplate volcanism: Evidence from O, H, and Sr isotopes in melilitites. Geology 25:1035–1038. doi:10.1130/0091-7613(1997)025<1035:ROFITO>2.3.CO;2

    Article  Google Scholar 

  • Hegner E, Walter HJ, Satir M (1995) Pb-Sr-Nd isotope compositions and trace element geochemistry of megacrysts and melilitites from the Tertiary Urach volcanic field: source composition of small volume melts under SW Germany. Contrib Mineral Petrol 122:322–335. doi:10.1007/s004100050131

    Article  Google Scholar 

  • Helz RT (1973) Phase relations of basalts in their melting range at P H2O  = 5 kb as a function of oxygen fugacity. J Petrol 14:249–302. doi:10.1093/petrology/14.2.249

    Article  Google Scholar 

  • Hirschmann MM (2000) Mantle solidus: Experimental constraints and the effects of peridotite composition. Geochem Geophys Geosys 1:1042–1067. doi:10.1029/2000GC000070

    Article  Google Scholar 

  • Hoernle KA, Zhang YS, Graham D (1995) Seismic and geochemical evidence for large-scale mantle upwelling beneath the eastern Atlantic and western and central Europe. Nature 374:34–39

    Article  Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: The message from oceanic volcanism. Nature 385:219–229. doi:10.1038/385219a0

    Article  Google Scholar 

  • Huckenholz HG, Gilbert MC (1984) Stabilität von Ca-Amphibol in Alkalibasalten der Hocheifel. Fortschr Mineral 62:106–107

    Google Scholar 

  • Ionov DA, Hofmann AW (1995) Nb-Ta-rich mantle amphiboles and micas: Implications for subduction-related metasomatic trace element fractionations. Earth Planet Sci Lett 131:341–356. doi:10.1016/0012-821X(95)00037-D

    Article  Google Scholar 

  • Ionov DA, Griffin WL, O’Reilly SY (1997) Volatile-bearing minerals and lithophile trace elements in the upper mantle. Chem Geol 141:153–184. doi:10.1016/S0009-2541(97)00061-2

    Article  Google Scholar 

  • Jochum KP, Dingwell DB, Rocholl A, Stoll B, Hofmann AW, Becker S, Besmehn A, Bessette D, Dietze HJ, Dulski P, Erzinger J, Hellebrand E, Hoppe P, Horn I, Janssens K, Jenner G, Klein M, McDonough W, Maetz M, Mezger K, Müker C, Nikogosian I, Pickhardt C, Raczek I, Rhede D, Seufert H, Simakin S, Sobolev A, Spettel B, Straub S, Vincze L, Wallianos A, Weckwerth G, Weyer S, Wolf D, Zimmer M (2000) The preparation and preliminary characterisation of eight geological MPI-ding reference glasses for in situ microanalysis. Geostand News 24:87–133. doi:10.1111/j.1751-908X.2000.tb00590.x

    Article  Google Scholar 

  • Jung S, Hoernes S (2000) The major- and trace-element and isotope (Sr, Nd, O) geochemistry of Cenozoic alkaline rift-type volcanic rocks from the Rhön area (central Germany): petrology, mantle source characteristics and implications for asthenosphere-lithosphere interactions. J Volcanol Geoth Res 99:27–53. doi:10.1016/S0377-0273(00)00156-6

    Article  Google Scholar 

  • Jung S, Pfänder J, Brügmann G, Stracke A (2005) Sources of primitive alkaline volcanic rocks from the Central European volcanic province (Rhön, Germany) inferred from Hf, Os and Pb isotopes. Contrib Mineral Petrol 150:546–559. doi:10.1007/s00410-005-0029-4

    Article  Google Scholar 

  • Jung C, Jung S, Hoffer E, Berndt J (2006) Petrogenesis of Tertiary mafic alkaline magmas in the Hocheifel, Germany. J Petrol 47:1637–1671. doi:10.1093/petrology/egl023

    Article  Google Scholar 

  • Jung S, Vieten K, Romer RL, Mezger K, Hoernes S, Satir M (2012) Petrogenesis of tertiary alkaline magmas in the Siebengebirge, Germany. J Petrol 53:2381–2409. doi:10.1093/petrology/egs047

    Article  Google Scholar 

  • Kempton P, Harmon R, Stosch HG, Hoefs J, Hawkesworth C (1988) Open-system O-isotope behaviour and trace element enrichment in the sub-Eifel mantle. Earth Planet Sci Lett 89:273–287. doi:10.1016/0012-821X(88)90116-1

    Article  Google Scholar 

  • Kesson S, Price RC (1972) The major and trace element chemistry of kaersutite and its bearing on the petrogenesis of alkaline rocks. Contrib Mineral Petrol 35:119–124. doi:10.1007/BF00370923

    Article  Google Scholar 

  • Kolb M, Paulick H, Kirchenbaur M, Münker C (2012) Petrogenesis of mafic to felsic lavas from the Oligocene Siebengebirge volcanic field (Germany): Implications for the origin of intracontinental volcanism in Central Europe. J Petrol 53:2349–2379. doi:10.1093/petrology/egs053

    Article  Google Scholar 

  • Kroner U, Romer RL (2013) Two plates—many subduction zones: The Variscan orogeny reconsidered. Gond Res 24:298–329. doi:10.1016/j.gr.2013.03.001

    Article  Google Scholar 

  • Kroner U, Romer RL, Linnemann U (2010) The Saxo-Thuringian Zone of the Variscan orogen as part of Pangea. In: Linnemann U, Romer RL (eds) Pre-Mesozoic Geology of Saxo-Thuringia: from the Cadomian active margin to the variscan orogen. Schweizerbart, Stuttgart, pp 3–16

    Google Scholar 

  • Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Guo YZ (1997) Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. Am Mineral 82:1019–1037

    Google Scholar 

  • Lee CTA, Luffi P, Plank T, Dalton H, Leeman WP (2009) Constraints on the depths and temperatures of basaltic magma generation on earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth Planet Sci Lett 279:20–33. doi:10.1016/j.epsl.2008.12.020

    Article  Google Scholar 

  • Lippolt HJ (1982) K/Ar age determinations and the correlation of Tertiary volcanic activity in Central Europe. Geol Jahrb Hann 52:113–135

    Google Scholar 

  • Ludwig K (2008) Isoplot 3.70. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 4:1–76

    Google Scholar 

  • Lustrino M, Wilson M (2007) The Circum-Mediterranean anorogenic Cenozoic igneous province. Earth-Sci Rev 81:1–65. doi:10.1016/j.earscirev.2006.09.002

    Article  Google Scholar 

  • Mattey D, Lowry D, Macpherson C (1994) Oxygen isotope composition of mantle peridotite. Earth Planet Sci Lett 128:231–241. doi:10.1016/0012-821X(94)90147-3

    Article  Google Scholar 

  • Mayer B, Jung S, Romer RL, Stracke A, Haase KM, Garbe-Schönberg CD (2013) Petrogenesis of Tertiary hornblende-bearing lavas in the Rhön, Germany. J Petrol 54:2095–2123. doi:10.1093/petrology/egt042

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253. doi:10.1016/0009-2541(94)00140-4

    Article  Google Scholar 

  • McDonough WF, Sun SS, Ringwood A, Jagoutz E, Hofmann AW (1992) Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth. Geochim Cosmo Act 56:1001–1012. doi:10.1016/0016-7037(92)90043-I

    Article  Google Scholar 

  • Mengel K, Sachs PM, Stosch HG, Wörner G, Loock G (1991) Crustal xenoliths from Cenozoic volcanic fields of West Germany: Implications for structure and composition of the continental crust. Tectonophysics 195:271–289. doi:10.1016/0040-1951(91)90215-E

    Article  Google Scholar 

  • Moine BN, Grégoire M, O’Reilly SY, Sheppard SMF, Cottin JY (2001) High field strength element fractionation in the upper mantle: Evidence from amphibole-rich composite mantle xenoliths from the Kerguelen Islands (Indian Ocean). J Petrol 42:2145–2167. doi:10.1093/petrology/42.11.2145

    Article  Google Scholar 

  • Molina J, Scarrow J, Montero P, Bea F (2009) High-Ti amphibole as a petrogenetic indicator of magma chemistry: evidence for mildly alkalic-hybrid melts during evolution of Variscan basic-ultrabasic magmatism of Central Iberia. Contrib Mineral Petrol 158:69–98. doi:10.1007/s00410-008-0371-4

    Article  Google Scholar 

  • Niida K, Green D (1999) Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contrib Mineral Petrol 135:18–40

    Article  Google Scholar 

  • O’Reilly SY, Griffin WL, Ryan CG (1991) Residence of trace elements in metasomatized spinel lherzolite xenoliths: a proton-microprobe study. Contrib Mineral Petrol 109:98–113

    Article  Google Scholar 

  • Otten MT (1984) The origin of brown hornblende in the Artfjället gabbro and dolerites. Contrib Mineral Petrol 86:189–199. doi:10.1007/BF00381846

    Article  Google Scholar 

  • Pearce NJ, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl 21:115–144. doi:10.1111/j.1751-908X.1997.tb00538.x

    Article  Google Scholar 

  • Pertermann M, Hirschmann MM (2003) Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: Constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. J Geophys Res Solid Earth 108:2125–2141. doi:10.1029/2000JB000118

    Article  Google Scholar 

  • Pfänder JA, Jung S, Münker C, Stracke A, Mezger K (2012) A possible high Nb/Ta reservoir in the continental lithospheric mantle and consequences on the global Nb budget: evidence from continental basalts from Central Germany. Geochim Cosmo Act 77:232–251. doi:10.1016/j.gca.2011.11.017

    Article  Google Scholar 

  • Pilet S, Baker MB, Stolper EM (2008) Metasomatized lithosphere and the origin of alkaline lavas. Science 320:916–919. doi:10.1126/science.1156563

    Article  Google Scholar 

  • Pilet S, Ulmer P, Villiger S (2010) Liquid line of descent of a basanitic liquid at 1.5 GPa: constraints on the formation of metasomatic veins. Contrib Mineral Petrol 159:621–643. doi:10.1007/s00410-009-0445-y

    Article  Google Scholar 

  • Pilet S, Baker MB, Müntener O, Stolper EM (2011) Monte Carlo simulations of metasomatic enrichment in the lithosphere and implications for the source of alkaline basalts. J Petrol 52:1415–1442. doi:10.1093/petrology/egr007

    Article  Google Scholar 

  • Powell W, Zhang M, O’Reilly SY, Tiepolo M (2004) Mantle amphibole trace-element and isotopic signatures trace multiple metasomatic episodes in lithospheric mantle, Western Victoria, Australia. Lithos 75:141–171. doi:10.1016/j.lithos.2003.12.017

    Article  Google Scholar 

  • Prelević D, Stracke A, Foley S, Romer RL, Conticelli S (2010) Hf isotope compositions of Mediterranean lamproites: mixing of melts from asthenosphere and crustally contaminated mantle lithosphere. Lithos 119:297–312. doi:10.1016/j.lithos.2010.07.007

    Article  Google Scholar 

  • Prodehl C (1981) Structure of the crust and upper mantle beneath the Central European rift system. Tectonophysics 80:255–269

    Article  Google Scholar 

  • Prodehl C, Mueller S, Glahn A, Gutscher M, Haak V (1992) Lithospheric cross-sections of the European Cenozoic rift system. Tectonophysics 208:113–138

    Article  Google Scholar 

  • Renne PR, Mundil R, Balco G, Min K, Ludwig KR (2010) Joint determination of 40K decay constants and 40Ar*/40K for the fish canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochim Cosmo Act 74:5349–5367. doi:10.1016/j.gca.2010.06.017

    Article  Google Scholar 

  • Ridolfi F, Renzulli A (2012) Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1,130 C and 2.2GPa. Contrib Mineral Petrol 163:877–895. doi:10.1007/s00410-011-0704-6

    Article  Google Scholar 

  • Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Mineral Petrol 160:45–66. doi:10.1007/s00410-009-0465-7

    Article  Google Scholar 

  • Romer RL, Heinrich W, Schröder-Smeibidl B, Meixner A, Fischer CO, Schulz C (2005) Elemental dispersion and stable isotope fractionation during reactive fluid-flow and fluid immiscibility in the Bufa del Diente aureole, NE-Mexico: evidence from radiographies and Li, B, Sr, Nd, and Pb isotope systematics. Contrib Mineral Petrol 149:400–429. doi:10.1007/s00410-005-0656-9

    Article  Google Scholar 

  • Rosenbaum JM (1993) Mantle phlogopite: A significant lead repository? Chem Geol 106:475–483. doi:10.1016/0009-2541(93)90046-L

    Article  Google Scholar 

  • Schwarz WH, Trieloff M (2007) Intercalibration of 40Ar-39Ar age standards NL-25, HB3gr hornblende, GA1550, SB-3, HD-B1 biotite and BMus/2 muscovite. Chem Geol 242:218–231. doi:10.1016/j.chemgeo.2007.03.016

    Article  Google Scholar 

  • Sharp ZD (1990) A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochim Cosmo Act 54:1353–1357. doi:10.1016/0016-7037(90)90160-M

    Article  Google Scholar 

  • Shaw CS, Eyzaguirre J (2000) Origin of megacrysts in the mafic alkaline lavas of the West Eifel volcanic field, Germany. Lithos 50:75–95. doi:10.1016/S0024-4937(99)00048-1

    Article  Google Scholar 

  • Shimizu N, Semet M, Allégre C (1978) Geochemical applications of quantitative ion-microprobe analysis. Geochim Cosmo Act 42:1321–1334. doi:10.1016/0016-7037(78)90037-6

    Article  Google Scholar 

  • Simonetti A, Bell K (1993) Isotopic disequilibrium in clinopyroxenes from nephelinitic lavas, Napak volcano, Eastern Uganda. Geology 21:243–246. doi:10.1130/0091-7613(1993)021<0243:IDICFN>2.3.CO;2

    Article  Google Scholar 

  • Simonetti A, Bell K (1994) Nd, Pb and Sr isotopic data from the Napak carbonatite-nephelinite centre, Eastern Uganda: an example of open-system crystal fractionation. Contrib Mineral Petrol 115:356–366. doi:10.1007/BF00310774

    Article  Google Scholar 

  • Simonetti A, Shore M, Bell K (1996) Diopside phenocrysts from nephelinite lavas, Napak volcano, eastern Uganda: Evidence for magma mixing. Can Mineral 34:411–421

    Google Scholar 

  • Stacey J, Kramers J (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221. doi:10.1016/0012-821X(75)90088-6

    Article  Google Scholar 

  • Tiepolo M, Vannucci R, Oberti R, Foley S, Bottazzi P, Zanetti A (2000) Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: crystal-chemical constraints and implications for natural systems. Earth Planet Sci Lett 176:185–201. doi:10.1016/S0012-821X(00)00004-2

    Article  Google Scholar 

  • Vannucci R, Piccardo G, Rivalenti G, Zanetti A, Rampone E, Ottolini L, Oberti R, Mazzucchelli M, Bottazzi P (1995) Origin of LREE-depleted amphiboles in the subcontinental mantle. Geochim Cosmo Act 59:1763–1771. doi:10.1016/0016-7037(95)00080-J

    Article  Google Scholar 

  • Wallace M, Green D (1991) The effect of bulk rock composition on the stability of amphibole in the upper mantle: implications for solidus positions and mantle metasomatism. Mineral Petrol 44:1–19

    Article  Google Scholar 

  • Wedepohl KH, Baumann A (1999) Central European Cenozoic plume volcanism with OIB characteristics and indications of a lower mantle source. Contrib Mineral Petrol 136:225–239. doi:10.1007/s004100050534

    Article  Google Scholar 

  • Wilkinson JFG, Hensel HD (1991) An analcime mugearite-megacryst association from north-eastern New South Wales: implications for high-pressure amphibole-dominated fractionation of alkaline magmas. Contrib Mineral Petrol 109:240–251. doi:10.1007/BF00306482

    Article  Google Scholar 

  • Wilshire H, Pike J, Meyer C, Schwarzmann E (1980) Amphibole-rich veins in lherzolite xenoliths, Dish Hill and Deadman Lake, California. Am J Sci 280:576–593

    Google Scholar 

  • Wilson M, Downes H (1991) Tertiary-Quaternary extension-related alkaline magmatism in Western and Central Europe. J Petrol 32:811–849. doi:10.1093/petrology/32.4.811

    Article  Google Scholar 

  • Wilson M, Downes H, Cebriá JM (1995a) Contrasting fractionation trends in coexisting continental alkaline magma series; Cantal, Massif Central, France. J Petrol 36:1729–1753

    Google Scholar 

  • Wilson M, Rosenbaum JM, Dunworth EA (1995b) Melilitites: partial melts of the thermal boundary layer? Contrib Mineral Petrol 119:181–196. doi:10.1007/BF00307280

    Article  Google Scholar 

  • Witt G, Seck H (1989) Origin of amphibole in recrystallized and porphyroclastic mantle xenoliths from the Rhenish Massif: Implications for the nature of mantle metasomatism. Earth Planet Sci Lett 91:327–340. doi:10.1016/0012-821X(89)90007-1

    Article  Google Scholar 

  • Witt-Eickschen G, Harte B (1994) Distribution of trace elements between amphibole and clinopyroxene from mantle peridotites of the Eifel (western Germany): An ion-microprobe study. Chem Geol 117:235–250. doi:10.1016/0009-2541(94)90130-9

    Article  Google Scholar 

  • Witt-Eickschen G, Kaminsky W, Kramm U, Harte B (1998) The nature of young vein metasomatism in the lithosphere of the West Eifel (Germany): Geochemical and isotopic constraints from composite mantle xenoliths from the Meerfelder Maar. J Petrol 39:155–185. doi:10.1093/petroj/39.1.155

    Article  Google Scholar 

  • Witt-Eickschen G, Seck HA, Mezger K, Eggins SM, Altherr R (2003) Lithospheric mantle evolution beneath the Eifel (Germany): Constraints from Sr-Nd-Pb isotopes and trace element abundances in spinel peridotite and pyroxenite xenoliths. J Petrol 44:1077–1095. doi:10.1093/petrology/44.6.1077

    Article  Google Scholar 

  • Ziegler PA (1990) Geological atlas of Eastern and Central Europe. Shell Int Pet Mij Geol, Soc 238 pp

    Google Scholar 

  • Ziegler PA (1992) European Cenozoic rift system. Tectonophysics 208:91–111. doi:10.1016/0040-1951(92)90338-7

    Article  Google Scholar 

  • Zindler A, Hart S (1986) Chemical geodynamics. Ann Rev Earth Planet Sci 14:493–571. doi:10.1146/annurev.ea.14.050186.002425

    Article  Google Scholar 

  • Zinner E, Crozaz G (1986) A method for the quantitative measurement of rare earth elements in the ion microprobe. Int J Mass Spectrom Ion Process 69:17–38. doi:10.1016/0168-1176(86)87039-2

    Article  Google Scholar 

Download references

Acknowledgments

BM and SJ would like to thank P. Stutz (Universität Hamburg) for excellent thin sections and S. Heidrich (Universität Hamburg) for electron microprobe measurements. This work was supported through Deutsche Forschungsgesellschaft Grant Ju 326/7-1 to SJ. We gratefully thank two anonymous reviewers for detailed comments that helped to focus this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Mayer or S. Jung.

Additional information

Communicated by T. L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 51 kb)

Appendix

Appendix

See Tables 5 and 6; Figs. 10, 11, 12, 13 and 14.

Fig. 10
figure 10

Backscattered electron image of amphibole Hbl-Rh10/09. The analysed profile (Fig. 11) is shown as red line

Fig. 11
figure 11

Major element profile (wt%) for amphibole Hbl-Rh10/09

Fig. 12
figure 12

Separate CI-normalised REE compositions (ppm) through the amphibole Hbl-Rh10/13 (rim, core, core, rim)

Fig. 13
figure 13

Nb/Th versus Lu/Hf for studied amphiboles and representative vein amphibole and disseminated amphibole compositions for comparison (Ionov and Hofmann 1995; Witt-Eickschen et al. 2003; Powell et al. 2004)

Fig. 14
figure 14

40Ar–39Ar age spectra and inverse isochron diagrams for samples Hbl-Rh10/01 (a, b), Hbl-Rh10/07 (c, d), Hbl-Rh10/13 (e, f), and Hbl-Rh10/33 (g, h). Inverse isochron diagrams comprise all measured temperature steps, and insets show the steps selected for plateau age calculation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, B., Jung, S., Romer, R.L. et al. Amphibole in alkaline basalts from intraplate settings: implications for the petrogenesis of alkaline lavas from the metasomatised lithospheric mantle. Contrib Mineral Petrol 167, 989 (2014). https://doi.org/10.1007/s00410-014-0989-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-014-0989-3

Keywords

Navigation