Skip to main content

Advertisement

Log in

Attenuation of fibrosis with selective inhibition of c-Abl by siRNA in systemic sclerosis dermal fibroblasts

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Cellular abelson (c-Abl), a non-receptor tyrosine kinase, is an important molecule in the pathogenesis of systemic sclerosis. There have been reports of beneficial effects of pharmacological tyrosine kinase inhibitors, such as imatinib mesylate, on fibrosis. However, these inhibitors affect multiple tyrosine kinases including c-Abl, c-kit, and platelet-derived growth factor receptor. The effects of selective inhibition of c-Abl using small interfering RNA (siRNA) on dermal fibrosis have not yet been explored. The aim of this study is to evaluate whether specific inhibition of c-Abl by siRNA can influence the transforming growth factor-β1 (TGF-β1)-induced fibrotic responses. Dermal fibroblasts from systemic sclerosis patients and healthy controls were transfected with c-Abl siRNA. The expression levels of collagen type I, fibronectin, connective tissue growth factor (CTGF), and α-smooth muscle actin (α-SMA) were measured at both the mRNA and protein levels in the absence or presence of TGF-β1 pro-fibrotic cytokine. In healthy dermal fibroblasts, the expression of collagen type 1, fibronectin, α-SMA, and CTGF mRNAs and proteins that were upregulated after stimulation with TGF-β1 was markedly decreased by c-Abl siRNA. Silencing of c-Abl via siRNA efficiently reduced the basal synthesis of collagen type I, fibronectin, α-SMA, and CTGF mRNAs and proteins in systemic sclerosis fibroblasts, but it had no effect on the baseline expression of these genes and proteins in healthy dermal fibroblasts. In conclusion, specific c-Abl gene silencing using siRNA effectively reduced fibrosis-related gene expression. Inhibition of c-Abl by siRNA may be a potential therapeutic approach for fibrotic diseases such as systemic sclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdollahi A, Li M, Ping G, Plathow C, Domhan S, Kiessling F, Lee LB, McMahon G, Grone HJ, Lipson KE et al (2005) Inhibition of platelet-derived growth factor signaling attenuates pulmonary fibrosis. J Exp Med 201:925–935. doi:10.1084/jem.20041393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Abraham DJ, Eckes B, Rajkumar V, Krieg T (2007) New developments in fibroblast and myofibroblast biology: implications for fibrosis and scleroderma. Curr Rheumatol Rep 9:136–143. doi:10.1007/s11926-007-0008-z

    Article  CAS  PubMed  Google Scholar 

  3. Akhmetshina A, Dees C, Pileckyte M, Maurer B, Axmann R, Jungel A, Zwerina J, Gay S, Schett G, Distler O et al (2008) Dual inhibition of c-abl and PDGF receptor signaling by dasatinib and nilotinib for the treatment of dermal fibrosis. FASEB J 22:2214–2222. doi:10.1096/fj.07-105627

    Article  CAS  PubMed  Google Scholar 

  4. Aono Y, Nishioka Y, Inayama M, Ugai M, Kishi J, Uehara H, Izumi K, Sone S (2005) Imatinib as a novel antifibrotic agent in bleomycin-induced pulmonary fibrosis in mice. Am J Respir Crit Care Med 171:1279–1285. doi:10.1164/rccm.200404-531OC

    Article  PubMed  Google Scholar 

  5. Bhattacharyya S, Ishida W, Wu M, Wilkes M, Mori Y, Hinchcliff M, Leof E, Varga J (2009) A non-Smad mechanism of fibroblast activation by transforming growth factor-beta via c-Abl and Egr-1: selective modulation by imatinib mesylate. Oncogene 28:1285–1297. doi:10.1038/onc.2008.479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Bhattacharyya S, Wei J, Varga J (2012) Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat Rev Rheumatol 8:42–54. doi:10.1038/nrrheum.2011.149

    Article  CAS  Google Scholar 

  7. Cheng A, Johnson CL, Ford LP (2008) A step-by-step procedure to analyze the efficacy of siRNA using real-time PCR. Methods Mol Biol 419:303–316. doi:10.1007/978-1-59745-033-1_21

    Article  CAS  PubMed  Google Scholar 

  8. Daniels CE, Wilkes MC, Edens M, Kottom TJ, Murphy SJ, Limper AH, Leof EB (2004) Imatinib mesylate inhibits the profibrogenic activity of TGF-beta and prevents bleomycin-mediated lung fibrosis. J Clin Invest 114:1308–1316. doi:10.1172/jci19603

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Desmouliere A, Redard M, Darby I, Gabbiani G (1995) Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 146:56–66

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Distler JH, Jungel A, Huber LC, Schulze-Horsel U, Zwerina J, Gay RE, Michel BA, Hauser T, Schett G, Gay S et al (2007) Imatinib mesylate reduces production of extracellular matrix and prevents development of experimental dermal fibrosis. Arthritis Rheum 56:311–322. doi:10.1002/art.22314

    Article  CAS  PubMed  Google Scholar 

  11. Dykxhoorn DM, Novina CD, Sharp PA (2003) Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 4:457–467. doi:10.1038/nrm1129

    Article  CAS  PubMed  Google Scholar 

  12. Fallahi P, Ferrari SM, Vita R, Di Domenicantonio A, Corrado A, Benvenga S, Antonelli A (2014) Thyroid dysfunctions induced by tyrosine kinase inhibitors. Expert Opin Drug Saf 13:723–733. doi:10.1517/14740338.2014.913021

    CAS  PubMed  Google Scholar 

  13. Heinrich MC, Griffith DJ, Druker BJ, Wait CL, Ott KA, Zigler AJ (2000) Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood 96:925–932

    CAS  PubMed  Google Scholar 

  14. Hernandez SE, Krishnaswami M, Miller AL, Koleske AJ (2004) How do Abl family kinases regulate cell shape and movement? Trends Cell Biol 14:36–44. doi:10.1016/j.tcb.2003.11.003

    Article  CAS  PubMed  Google Scholar 

  15. Horton JA, Chung EJ, Hudak KE, Sowers A, Thetford A, White AO, Mitchell JB, Citrin DE (2013) Inhibition of radiation-induced skin fibrosis with imatinib. Int J Radiat Biol 89:162–170. doi:10.3109/09553002.2013.741281

    Article  CAS  PubMed  Google Scholar 

  16. Ihn H (2002) Pathogenesis of fibrosis: role of TGF-beta and CTGF. Curr Opin Rheumatol 14:681–685

    Article  CAS  PubMed  Google Scholar 

  17. Ihn H (2005) Scleroderma, fibroblasts, signaling, and excessive extracellular matrix. Curr Rheumatol Rep 7:156–162. doi:10.1007/s11926-005-0069-9

    Article  CAS  PubMed  Google Scholar 

  18. Kerkela R, Grazette L, Yacobi R, Iliescu C, Patten R, Beahm C, Walters B, Shevtsov S, Pesant S, Clubb FJ et al (2006) Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med 12:908–916. doi:10.1038/nm1446

    Article  PubMed  Google Scholar 

  19. Kissin E, Korn JH (2002) Apoptosis and myofibroblasts in the pathogenesis of systemic sclerosis. Curr Rheumatol Rep 4:129–135. doi:10.1007/s11926-002-0008-y

    Article  PubMed  Google Scholar 

  20. LeRoy EC, Black C, Fleischmajer R, Jablonska S, Krieg T, Medsger TA Jr, Rowell N, Wollheim F (1988) Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol 15:202–205

    CAS  PubMed  Google Scholar 

  21. Li G, Xie Q, Shi Y, Li D, Zhang M, Jiang S, Zhou H, Lu H, Jin Y (2006) Inhibition of connective tissue growth factor by siRNA prevents liver fibrosis in rats. J Gene Med 8:889–900. doi:10.1002/jgm.894

    Article  CAS  PubMed  Google Scholar 

  22. Liu Y, Wang Z, Kwong SQ, Lui EL, Friedman SL, Li FR, Lam RW, Zhang GC, Zhang H, Ye T (2011) Inhibition of PDGF, TGF-beta, and Abl signaling and reduction of liver fibrosis by the small molecule Bcr-Abl tyrosine kinase antagonist Nilotinib. J Hepatol 55:612–625. doi:10.1016/j.jhep.2010.11.035

    Article  CAS  PubMed  Google Scholar 

  23. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108. doi:10.1038/nprot.2008.73

    Article  CAS  PubMed  Google Scholar 

  24. Shaul Y (2000) c-Abl: activation and nuclear targets. Cell Death Differ 7:10–16. doi:10.1038/sj.cdd.4400626

    Article  CAS  PubMed  Google Scholar 

  25. Takashima A (2001) Establishment of fibroblast cultures. Curr Protoc Cell Biol 2:1. doi:10.1002/0471143030.cb0201s00

    PubMed  Google Scholar 

  26. Trojanowska M (2004) What did we learn by studying scleroderma fibroblasts? Clin Exp Rheumatol 22:S59–S63

    CAS  PubMed  Google Scholar 

  27. Tuzmen S, Kiefer J, Mousses S (2007) Validation of short interfering RNA knockdowns by quantitative real-time PCR. Methods Mol Biol 353:177–203. doi:10.1385/1-59745-229-7:177

    PubMed  Google Scholar 

  28. van Daele PL, Dik WA, Thio HB, van Hal PT, van Laar JA, Hooijkaas H, van Hagen PM (2008) Is imatinib mesylate a promising drug in systemic sclerosis? Arthritis Rheum 58:2549–2552. doi:10.1002/art.23648

    Article  PubMed  Google Scholar 

  29. Van den Hoogen F, Khanna D, Fransen J, Johnson SR, Baron M, Tyndall A, Matucci-Cerinic M, Naden RP, Medsger TA Jr, Carreira PE et al (2013) 2013 classification criteria for systemic sclerosis: an American college of rheumatology/European league against rheumatism collaborative initiative. Ann Rheum Dis 72:1747–1755. doi:10.1136/annrheumdis-2013-204424

    Article  PubMed  Google Scholar 

  30. Varga J, Abraham D (2007) Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest 117:557–567. doi:10.1172/jci31139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Verrecchia F, Mauviel A (2007) Transforming growth factor-beta and fibrosis. World J Gastroenterol 13:3056–3062

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Wall NR, Shi Y (2003) Small RNA: can RNA interference be exploited for therapy? Lancet 362:1401–1403. doi:10.1016/s0140-6736(03)14637-5

    Article  CAS  PubMed  Google Scholar 

  33. Wang S, Wilkes MC, Leof EB, Hirschberg R (2005) Imatinib mesylate blocks a non-Smad TGF-beta pathway and reduces renal fibrogenesis in vivo. FASEB J 19:1–11. doi:10.1096/fj.04-2370com

    Article  PubMed  Google Scholar 

  34. Wilkes MC, Leof EB (2006) Transforming growth factor beta activation of c-Abl is independent of receptor internalization and regulated by phosphatidylinositol 3-kinase and PAK2 in mesenchymal cultures. J Biol Chem 281:27846–27854. doi:10.1074/jbc.M603721200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This survey was supported by Iran National Science Foundation (INSF) (Grant No. 90001195) and Tehran university of Medical Sciences (Grant No. 90-03-41-13988). The authors would like to thank Dr. Ashjaee B for her kind help.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nasrin Motamed or Farhad Gharibdoost.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 89 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimizadeh, E., Motamed, N., Mahmoudi, M. et al. Attenuation of fibrosis with selective inhibition of c-Abl by siRNA in systemic sclerosis dermal fibroblasts. Arch Dermatol Res 307, 135–142 (2015). https://doi.org/10.1007/s00403-014-1532-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-014-1532-0

Keywords

Navigation