Skip to main content

Advertisement

Log in

Scleroderma, fibroblasts, signaling, and excessive extracellular matrix

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Excessive extracellular matrix (ECM) deposition in the skin, lung, and other organs is a hallmark of systemic sclerosis (SSc). The pathogenesis of SSc is still poorly understood, but increasing evidence suggests that various cytokines such as transforming growth factor (TGF)-β and their signaling pathways are key mediators of tissue fibrosis as a consequence of ECM accumulation in the pathogenesis of fibrosis such as SSc. TGF-β regulates diverse biologic activities including cell growth, cell death or apoptosis, cell differentiation, and ECM synthesis. TGF-β is known to induce the expression of ECM proteins in mesenchymal cells, and to stimulate the production of protease inhibitors that prevent enzymatic breakdown of the ECM. This paper focuses on the possible role of ECM, various cytokines, especially TGF-β signal transduction pathways in the pathogenesis of fibrosis in SSc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. LeRoy EC: Systemic sclerosis (scleroderma). In Cecil Textbook of Medicine, edn 19. Edited by Wyngaarden JB, Smith LH, Bennett JC. Philadelphia: WB Saunders; 1992:1530–1535.

    Google Scholar 

  2. Korn JH: Immunological aspects of scleroderma. Curr Opin Rheumatol 1991, 3:947–952.

    Article  PubMed  CAS  Google Scholar 

  3. Kulozik M, Hogg A, Lankat-Buttgereit B, Kreig T: Co-local- ization of transforming growth factor β2 with al (I) procollagen mRNA in tissue sections of patients with systemic sclerosis. J Clin Invest 1990, 86:917–922.

    Article  PubMed  CAS  Google Scholar 

  4. LeRoy EC: Increased collagen synthesis by scleroderma skin fibroblasts in vivo. J Clin Invest 1974, 54:880–889.

    Google Scholar 

  5. Xu W, LeRoy EC, Smith EA: Fibronectin release by systemic sclerosis and normal dermal fibroblasts in response to TGF-β. J Rheumatol 1991, 18:241–246.

    PubMed  CAS  Google Scholar 

  6. Falanga V, Tiegs SL, Alstadt SP, et al.: Transforming growth factor β: selective increase in glycosaminoglycan synthesis by cultures of fibroblasts from patients with progressive systemic sclerosis. J Invest Dermatol 1987, 89:100–104.

    Article  PubMed  CAS  Google Scholar 

  7. Kirk TZ, Mark ME, Chua CC, et al.: Myofibroblasts from scleroderma skin synthesize elevated levels of collagen and tissue inhibitor of metalloprotainase (TIMP-1) with two forms of TIMP-1. J Biol Chem 1995, 270:3423–3428.

    Article  PubMed  CAS  Google Scholar 

  8. Ihn H, Sato S, Fujimoto M, et al.: Circulating intercellular adhesion molecule-1 in the sera of patients with systemic sclerosis: enhancement by inflammatory cytokines. BrJ Rheumatol 1997, 36:1270–1275.

    Article  CAS  Google Scholar 

  9. Ihn H, Tamaki K: Increased phosphorylation of transcrip- tion factor Sp1 in scleroderma fibroblasts: association with increased expression of type I collagen gene. Arthritis Rheum 2000, 43:2240–2247.

    Article  PubMed  CAS  Google Scholar 

  10. LeRoy EC, Smith EA, Kahaleh MB, et al.: A strategy for determining the pathogenesis of systemic sclerosis: is transforming growth factor β the answer?. Arthritis Rheum 1989, 32:817–825.

    Google Scholar 

  11. Ihn H: Pathogenesis of fibrosis: role of TGF-β and CTGF. Curr Opin Rheumatol 2002, 14:681–685.

    Article  PubMed  CAS  Google Scholar 

  12. Ihn H: The role of TGF-β signaling in the pathogenesis of fibrosis in scleroderma. Arch Immunol TherExp 2002, 50:325–331.

    CAS  Google Scholar 

  13. Massague J: The transforming growth factor-β family. Annu Rev Cell Biol 1990, 6:597–641.

    Article  PubMed  CAS  Google Scholar 

  14. Ihn H, Yamane K, Kubo M, Tamaki K: Blockade of endo- genous transforming growth factor β signaling prevents up-regulated collagen synthesis in scleroderma fibroblasts: association with increased expression of transforming growth factor β receptors. Arthritis Rheum 2001, 44:474–480.

    Article  PubMed  CAS  Google Scholar 

  15. Needleman BW, Choi J, Burrows-Menzu A, Fontana JA: Secretion and binding of transforming growth factor β by scleroderma and normal dermal fibroblasts. Arthritis Rheum 1990, 33:650–653.

    Article  PubMed  CAS  Google Scholar 

  16. Wrana JL, Attisano L, Weisser R, et al.: Mechanism of activa- tion of the TGF-β receptor. Nature 1994, 370:341–347.

    Article  PubMed  CAS  Google Scholar 

  17. Kawakami T, Ihn H, Xu W, et al.: Increased expression of TGF-β receptors by scleroderma fibroblasts: evidence for contribution of autocrine TGF-β signaling to scleroderma phenotype. J Invest Dermatol 1998, 110:47–51.

    Article  PubMed  CAS  Google Scholar 

  18. Kubo M, Ihn H, Yamane K, Tamaki K: Up-regulated expres- sion of transforming growth factor β receptors in dermal fibroblasts in skin sections from patients with localized scleroderma. Arthritis Rheum 2001, 44:731–734.

    Article  PubMed  CAS  Google Scholar 

  19. Kubo M, Ihn H, Yamane K, Tamaki K: Up-regulated expres- sion of transforming growth factor β receptors in dermal fibroblasts of the skin sections from patients with systemic sclerosis. J Rheumatol 2002, 29:2558–2564.

    PubMed  CAS  Google Scholar 

  20. Pannu J, Gore-Hyer E, Yamanaka M, et al.: An increased transforming growth factor β receptor type I:type II ratio contributes to elevated collagen protein synthesis that is resistant to inhibition via a kinase-deficient transforming growth factor β receptor type II in scleroderma. Arthritis Rheum 2004, 50:1566–1577.

    Article  PubMed  CAS  Google Scholar 

  21. Yamane K, Ihn H, Kubo M, Tamaki K: Increased transcrip- tional activities of transforming growth factor-β receptors in scleroderma fibroblasts. Arthritis Rheum 2002, 46:2421–2428.

    Article  PubMed  CAS  Google Scholar 

  22. Yamane K, Ihn H, Tamaki K: Epidermal growth factor up-regulates expression of transforming growth factor-β receptor type II in human dermal fibroblasts by phospho- inositide 3-kinase/ Akt signaling pathway: resistance to epidermal growth factor stimulation in scleroderma fibroblasts. Arthritis Rheum 2003, 48:1652–1666.

    Article  PubMed  CAS  Google Scholar 

  23. Yamane K, Ihn H, Asano Y, et al.: Antagonistic effects of TNF-α on TGF-β signaling through downregulation of TGF-β receptor type II in human dermal fibroblasts. J Immunol 2003, 171:3855–3862.

    PubMed  CAS  Google Scholar 

  24. Massague J, Chen YG: Controlling TGF-β signaling. Genes Dev 2000, 14:627–644.

    PubMed  CAS  Google Scholar 

  25. Flanders KC, Sullivan CD, Fujii M, et al.: Mice lacking Smad3 are protected against cutaneous injury induced by ionizing radiation. Am J Pathol 2002, 160:1057–1068.This study showed that inhibition of Smad3 decreases tissue damage and reduces fibrotic response.

    PubMed  CAS  Google Scholar 

  26. Lee DK, Park SH, Yi Y, et al.: The hepatitis B virus encoded oncoprotein pX amplifies TGF-β family signaling through direct interaction with Smad4: potential mechanism of hepatitis B virus-induced liver fibrosis. Genes Dev 2001, 15:455–466.

    Article  PubMed  CAS  Google Scholar 

  27. Terada Y, Hanada S, Nakao A, et al.: Gene transfer of Smad7 using electroporation of adenovirus prevents renal fibrosis in post-obstructed kidney. Kidney Int 2002, 61:94–98.

    Article  PubMed  Google Scholar 

  28. Holmes A, Abraham DJ, Sa S, et al.: CTGF and SMADs, maintenance of scleroderma phenotype is independent of SMAD signaling. J Biol Chem 2001, 276:10594–10601.

    Article  PubMed  CAS  Google Scholar 

  29. Dong C, Zhu S, Wang T, et al.: Deficient Smad7 expression: a putative molecular defect in scleroderma. Proc Natl Acad Sci USA 2002, 99:3908–3913.

    Article  PubMed  CAS  Google Scholar 

  30. Mori Y, Chen SJ, Varga J: Expression and regulation of intracellular SMAD signaling in scleroderma skin fibro- blasts. Arthritis Rheum 2003, 48:1964–1978.This study is the first to demonstrate ligand-independent constitutive activation of Smad signaling in SSc fibroblasts.

    Article  PubMed  CAS  Google Scholar 

  31. Takagawa S, Lakos G, Mori Y, et al.: Sustained activation of fibroblast transforming growth factor-β/ Smad signaling in a murine model of scleroderma. J Invest Dermatol 2003, 121:41–50.

    Article  PubMed  CAS  Google Scholar 

  32. Asano Y, Ihn H, Yamane K, et al.: Impaired Smad7-Smurf- mediated negative regulation of TGF-β signaling in scleroderma fibroblasts. J Clin Invest 2004, 113:253–264.This is the first report of disturbed negative regulation of TGF-β signaling in fibrosis.

    Article  PubMed  CAS  Google Scholar 

  33. Igarashi A, Okochi H, Bradham DM, Grotendorst GR: Regula- tion of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair. Mol Biol Cell 1993, 4:637–645.

    PubMed  CAS  Google Scholar 

  34. Igarashi A, Nashiro K, Kikuchi K, et al.: Significant correlation between connective tissue growth factor gene expression and skin sclerosis in tissue sections from patients with systemic sclerosis.J Invest Dermatol 1995, 105:280–284.

    Article  PubMed  CAS  Google Scholar 

  35. Stratton R, Shiwen X, Martini G, et al.: Iloprost suppresses connective tissue growth factor production in fibroblasts and in the skin of scleroderma patients. J Clin Invest 2001, 108:241–250.

    Article  PubMed  CAS  Google Scholar 

  36. Holmes A, Abraham DJ, Chen Y, et al.: Constitutive connective tissue growth factor expression in scleroderma fibroblasts is dependent on Sp1. J Biol Chem 2003, 278:41728–41733.

    Article  PubMed  CAS  Google Scholar 

  37. Gore-Hyer E, Pannu J, Smith EA, et al.: Selective stimulation of collagen synthesis in the presence of costimulatory insulin signaling by connective tissue growth factor in scleroderma fibroblasts. Arthritis Rheum 2003, 48:798–806.

    Article  PubMed  CAS  Google Scholar 

  38. Ihn H, Ohnishi K, Tamaki T, et al.: Transcriptional regula- tion of the human α2(I) collagen gene: combined action of upstream stimulatory and inhibitory cis-acting element. JBiol Chem 1996, 271:26717–26723.

    CAS  Google Scholar 

  39. Ihn H, LeRoy EC, Trojanowska M: Oncostatin M stimulates transcription of the human α2(I) collagen gene via the Sp1/Sp3-binding site. JBiol Chem 1997, 272:24666–24672.

    Article  CAS  Google Scholar 

  40. Ihn H, Trojanowska M: Sp3 is a transcriptional activator of the human α2(I) collagen gene. Nucleic Acids Res 1997, 25:3712–3717.

    Article  PubMed  CAS  Google Scholar 

  41. Ihn H, Tamaki K: Competition analysis of the human α2(I) collagen promoter using synthetic oligonucleotides. J Invest Dermatol 2000, 114:1011–1016.

    Article  PubMed  CAS  Google Scholar 

  42. Ihn H, Ihn Y, Trojanowska M: Sp1 phosphorylation induced by serum stimulates the human α2(I) collagen gene. J Invest Dermatol 2001, 117:301–308.

    Article  PubMed  CAS  Google Scholar 

  43. Greenwel P, Inagaki Y, Hu W, et al.: Sp1 is required for the early response of α2(I) collagen to transforming growth factor-βl. J Biol Chem 1997, 272:19738–19745.

    Article  PubMed  CAS  Google Scholar 

  44. Chen SJ, Yuan W, Lo S, et al.: Interaction of Smad3 with proxi- mal Smad-binding element of the human α2 (I) collagen gene promoter required for transcriptional activation by TGF-β. J Cell Physiol 2000, 183:381–392.

    Article  PubMed  CAS  Google Scholar 

  45. Zhang W, Ou J, Inagaki Y, etal.: Synergistic cooperation between Sp1 and Smad3/Smad4 mediates transforming growth factor-βl stimulation of α2(I) collagen (COL1Α2) transcription. J Biol Chem 2000, 275:39237–39245.This study provided the first linkage between Sp1 and Smad3/4 in type I collagen biosynthesis induced by TGF-β

    Article  PubMed  CAS  Google Scholar 

  46. Ghosh AK, Yuan W, Mori Y, Varga J: Smad-dependent stimu- lation of type I collagen gene expression in human skin fibroblasts by TGF-β involves functional cooperation with p300/CBP transcriptional coactivators. Oncogene 2000, 19:3546–3555.This report showed, for the first time, that the multifunctional p300/CBP coactivators play a major role in Smad-dependent TGF-β stimulation of collagen gene expression.

    Article  PubMed  CAS  Google Scholar 

  47. Czuwara-Ladykowska J, Sementchenko VI, Watson FK, Trojanowska M: Ets1 is an effector of the TGF-β signaling pathway and an antagonist of the profibrotic effects of TGF-β. J Biol Chem 2002, 277:20399–20408.

    Article  PubMed  CAS  Google Scholar 

  48. Inagaki Y, Truter S, Tanaka S, et al.: Overlapping pathways mediate the opposing actions of tumor necrosis factor-a and transforming growth factor-β on α2(I) collagen gene transcription. J Biol Chem 1995, 270:3353–3358.

    Article  PubMed  CAS  Google Scholar 

  49. Chung KY, Agarwal A, Uitto J, Mauviel A: An AP-1 binding sequence is essential for regulation of the human α2(I) collagen (COL1Α2) promoter activity by transforming growth factor-β. J Biol Chem 1996, 271:3272–3278.

    Article  PubMed  CAS  Google Scholar 

  50. Kouba DJ, Chung KY, Nishiyama T, et al.: Nuclear factor-B mediates TNF-α inhibitory effect on α2(I) collagen (COL1Α2) gene transcription in human dermal fibroblasts. J Immunol 1999, 162:4226–4234.

    PubMed  CAS  Google Scholar 

  51. Greenwel P, Tanaka S, Penkov D, et al.: Tumor necrosis factor α inhibits type I collagen synthesis through repressive CCAAT/enhancer-binding proteins. Mol Cell Biol 2000, 20:912–918.

    Article  PubMed  CAS  Google Scholar 

  52. Verrechia F, Wagner EF, Mauviel A: Distinct involvement of the Jun-N-terminal kinase and NF-kB pathways in the repression of the human COL1Α2 gene by TNF-α. EMBO Rep 2002, 3:1069–1074.

    Article  Google Scholar 

  53. Ghosh AK, Yuan W, Mori Y, et al.: Antagonistic regulation of type I collagen gene expression by interferon-y and transforming growth factor-β integration at the level of p300/CBP transcriptional coactivators. J Biol Chem 2001, 276:11041–11048.

    Article  PubMed  CAS  Google Scholar 

  54. Xu Y, Wang L, Buttice G, et al.: Interferon-γ repression of collagen (COL1Α2) transcription is mediated by the RFX5 complex. J Biol Chem 2003, 278:49134–49144.

    Article  PubMed  CAS  Google Scholar 

  55. Higashi K, Inagaki Y, Fujimori K, et al.: Interferon-γ inter- feres with transforming growth factor-β signaling through direct interaction of YB-1 with Smad3. J Biol Chem 2003, 278:43470–43479.

    Article  PubMed  CAS  Google Scholar 

  56. Buttner C, Skupin A, Rieber EP: Transcriptional activation of the type I collagen genes COL1A1 and COL1Α2 in fibro- blasts by interleukin-4: analysis of the functional collagen promoter sequences. J Cell Physiol 2004, 198:248–258.

    Article  PubMed  CAS  Google Scholar 

  57. Jinnin M, Ihn H, Yamane K, Tamaki K: Interleukin-13 stimulates the transcription of the human α2(I) collagen gene in human dermal fibroblasts. J Biol Chem 2004, 279:41783–41791.In this study, the target genes of IL-13 by cDNA microarray analysis were shown. PI3 kinase STAT6 were implicated in the fibrosis.

    Article  PubMed  CAS  Google Scholar 

  58. Asano Y, Ihn H, Yamane K, et al.: Phosphatidylinositol 3-kinase is involved in α2(I) collagen gene expression in normal and scleroderma fibroblasts. J Immunol 2004, 172:7123–7135.

    PubMed  CAS  Google Scholar 

  59. McGaha TL, Kodeda T, Spiera H, et al.: Halofuginone inhibi- tion of COL1Α2 promoter activity via a c-jun-dependent mechanism. Arthritis Rheum 2002, 46:2748–2761.

    Article  PubMed  CAS  Google Scholar 

  60. Xavier S, Piek E, Fujii M, et al.: Amelioration of radia- tion-induced fibrosis: inhibition of transforming growth factor-β signaling by halofuginone. J Biol Chem 2004, 279:15167–15176.

    Article  PubMed  CAS  Google Scholar 

  61. Wendling J, Marchand A, Mauviel A, Verrechia F: 5-fluorouracil blocks transforming growth factor-β-induced α2 type I collagen gene (COL1Α2) expression in human fibroblasts via c-Jun NH2-terminal kinase/activator protein-1 activation. Mol Pharmacol 2003, 64:707–713.

    Article  PubMed  CAS  Google Scholar 

  62. Louvena N, Saitta B, Herrick DJ, Jimenez SA: Transcriptional inhibition of type I collagen gene expression in scleroderma fibroblasts by the antineoplastic drug ecteinascidin 743. J Biol Chem 2003, 278:40400–40407.

    Article  CAS  Google Scholar 

  63. Jimenez SA, Gaidarova S, Saitta B, et al.: Role of protein kinase C-S in the regulation of collagen gene expression in scleroderma fibroblasts. J Clin Invest 2001, 108:1395–1403.This study suggested that PKC-S is involved in the upregulated collagen gene expression in SSc fibroblasts.

    Article  PubMed  CAS  Google Scholar 

  64. Runyan CE, Schnaper HW, Poncelet AC: Smad3 and PKCS mediate TGF-βl-induced collagen I expression in human mesenchymal cells. Am J Physiol Renal Physiol 2003, 285:F413-F422.

    PubMed  Google Scholar 

  65. Cicchillitti L, Jimenez SA, Sala A, Saitta B: B-Myb acts as a repressor of human COL1A1 collagen gene expression by interacting with Sp1 and CBF factors in scleroderma fibroblasts. Biochem J 2004, 378:609–616.

    Article  PubMed  CAS  Google Scholar 

  66. Luchetti MM, Paroncini P, Majlingova P, et al.: Chracteriza- tion of the c-Myb-responsive region and regulation of the human type I collagen α2 chain gene by c-Myb. J Biol Chem 2003, 278:1533–1541.

    Article  PubMed  CAS  Google Scholar 

  67. Kubo M, Czuwara-Ladykowska J, Moussa O, et al.: Persistent down-regulation of Fli1, a suppressor of collagen trans- cription, in fibrotic scleroderma skin. Am J Pathol 2003, 163:571–581.This study supported the role of Fli1 as a suppressor of collagen transcription, which suggested that persistent down-regulation of Fli1 in SSc fibroblasts contribute to the fibrosis in this disease.

    PubMed  CAS  Google Scholar 

  68. Sato M, Markiewicz M, Yamanaka M, et al.: Modulation of transforming growth factor-β (TGF-β) signaling by endogenous sphingolipid mediators. J Biol Chem 2003, 278:9276–9282.

    Article  PubMed  CAS  Google Scholar 

  69. Shegogue D, Trojanowska M: Mammalian target of rapamycin positively regulates collagen type I production via a phos-phatidylinositol 3-kinase independent pathway. J Biol Chem 2004, 279:23116–23175.

    Article  CAS  Google Scholar 

  70. Ghosh AK, Bhattacharyya S, Lakos G, et al.: Disruption of transforming growth factor β signaling and profibrotic responses in normal skin fibroblasts by peroxisome proliferator-activated receptor. Arthritis Rheum 2004, 50:1305–1318.

    Article  PubMed  CAS  Google Scholar 

  71. Ghosh AK, Bhattacharyya S, Varga J: The tumor suppressor p53 abrogates Smad-dependent collagen gene induction in mesenchymal cells. J Biol Chem 2004, 279:47455–47463.

    Article  PubMed  CAS  Google Scholar 

  72. Mimura Y, Ihn H, Jinnin M, et al.: Epidermal growth factor induces fibronectin expression in human dermal fibroblasts via protein kinase CS signaling pathway. J Invest Dermatol 2004, 122:1390–1398.

    Article  PubMed  CAS  Google Scholar 

  73. Hocevar BA, Brown TL, Howe PH: TGFβ induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent Smad4-independent pathway. EMBO J 1999, 18:1345–1356.

    Article  PubMed  CAS  Google Scholar 

  74. Jinnin M, Ihn H, Asano Y, et al.: Tenascin-C upregulation by transforming growth factor-β in human dermal fibroblasts involves Smad3, Sp1 and Ets-1. Oncogene 2004, 23:1656–1667.

    Article  PubMed  CAS  Google Scholar 

  75. Kissin EY, Lemaire R, Korn JH, Lafyatis R: Transforming growth factor β induces fibroblast fibrillin-1 matrix forma- tion. Arthritis Rheum 2002, 46:3000–3009.

    Article  PubMed  CAS  Google Scholar 

  76. Lemaire R, Farina G, Kissin EY, et al.: Mutant fibrillin-1 from tight skin mice increases extracellular matrix incorporation of microfibril-associated glycoprotein 2 and type I collagen. Arthritis Rheum 2004, 50:915–926.

    Article  PubMed  CAS  Google Scholar 

  77. Yuan W, Varga J: Transforming growth factor-β repression of matrix metalloproteinase 1 in dermal fibroblasts involves Smad3. J Biol Chem 2001, 276:38502–38510.

    Article  PubMed  CAS  Google Scholar 

  78. Mattila L, Airola K, Ahonen M, et al.: Activation of tissue inhibitor of metalloproteinase-3 (TIMP-3) mRNA expres- sion in scleroderma skin fibroblasts. J Invest Dermatol 1998, 110:416–421.

    Article  PubMed  CAS  Google Scholar 

  79. Jinnin M, Ihn H, Yamane K, et al.: Serum levels of tissue inhibitor of metalloproteinase-1 and 2 in patients with eosinophilic fasciitis. Br J Dermatol 2004, 151:407–412.

    Article  PubMed  CAS  Google Scholar 

  80. Ihn H, Yamane K, Asano Y, et al.: IL-4 up-regulates the expression of tissue inhibitor of metalloproteinase-2 in dermal fibroblasts via the p38 mitogen-activated protein kinase-dependent pathway. J Immunol 2002, 168:1895–1902.

    PubMed  CAS  Google Scholar 

  81. Sato M, Shegogue D, Gore EA, et al.: Role of p38 MAPK in transforming growth factor β stimulation of collagen production by scleroderma and healthy dermal fibroblasts. J Invest Dermatol 2002, 118:704–711.

    Article  PubMed  CAS  Google Scholar 

  82. Ihn H, Tamaki K: Oncostatin M stimulates the growth of dermal fibroblasts via a mitogen-activated protein kinase-dependent pathway. J Immunol 2000, 165:2149–2155.

    PubMed  CAS  Google Scholar 

  83. Asano Y, Ihn H, Yamane K, et al.: Increased expression levels of integrin avβ5 on scleroderma fibroblasts. Am J Pathol 2004, 164:1275–1292.

    PubMed  CAS  Google Scholar 

  84. Shi-Wen X, Denton CP, Dashwood MR, et al.: Fibroblast matrix gene expression and connective tissue remodeling: role of endothelin-1. J Invest Dermatol 2001, 116:417–425.

    Article  PubMed  CAS  Google Scholar 

  85. Shi-Wen X, Chen Y, Denton CP, et al.: Endothelin-1 promotes myofibroblast induction through the ETA receptor via a rac/phosphoinositide 3-kinase/ Akt-dependent pathway and is essential for the enhanced contractile phenotype of fibrotic fibroblasts. Mol Biol Cell 2004, 15:2707–2719.

    Article  PubMed  Google Scholar 

  86. Kawaguchi Y, Takagi K, Hara M, et al.: Angiotensin II in the lesional skin of systemic sclerosis patients contributes to tissue fibrosis via angiotensi II type 1 receptors. Arthritis Rheum 2004, 50:216–226.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ihn, H. Scleroderma, fibroblasts, signaling, and excessive extracellular matrix. Curr Rheumatol Rep 7, 156–162 (2005). https://doi.org/10.1007/s11926-005-0069-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-005-0069-9

Keywords

Navigation