Skip to main content

Advertisement

Log in

Mutations in ARHGEF15 cause autosomal dominant hereditary cerebral small vessel disease and osteoporotic fracture

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Cerebral small vessel disease (CSVD) is a prominent cause of ischemic and hemorrhagic stroke and a leading cause of vascular dementia, affecting small penetrating vessels of the brain. Despite current advances in genetic susceptibility studies, challenges remain in defining the causative genes and the underlying pathophysiological mechanisms. Here, we reported that the ARHGEF15 gene was a causal gene linked to autosomal dominant inherited CSVD. We identified one heterozygous nonsynonymous mutation of the ARHGEF15 gene that cosegregated completely in two families with CSVD, and a heterozygous nonsynonymous mutation and a stop-gain mutation in two individuals with sporadic CSVD, respectively. Intriguingly, clinical imaging and pathological findings displayed severe osteoporosis and even osteoporotic fractures in all the ARHGEF15 mutation carriers. In vitro experiments indicated that ARHGEF15 mutations resulted in RhoA/ROCK2 inactivation-induced F-actin cytoskeleton disorganization in vascular smooth muscle cells and endothelial cells and osteoblast dysfunction by inhibiting the Wnt/β-catenin signaling pathway in osteoblast cells. Furthermore, Arhgef15-e(V368M)1 transgenic mice developed CSVD-like pathological and behavioral phenotypes, accompanied by severe osteoporosis. Taken together, our findings provide strong evidence that loss-of-function mutations of the ARHGEF15 gene cause CSVD accompanied by osteoporotic fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Azevedo O, Gago MF, Miltenberger-Miltenyi G, Sousa N, Cunha D (2020) Fabry disease therapy: state-of-the-art and current challenges. Int J Mol Sci 2020:22. https://doi.org/10.3390/ijms22010206

    Article  CAS  Google Scholar 

  2. Carbone ML, Chadeuf G, Heurtebise-Chretien S, Prieur X, Quillard T, Goueffic Y et al (2017) Leukocyte RhoA exchange factor Arhgef1 mediates vascular inflammation and atherosclerosis. J Clin Invest 127:4516–4526. https://doi.org/10.1172/JCI92702

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chan DCH, Xu J, Vujovic A, Wong N, Gordon V, de Rooij L et al (2021) Arhgef2 regulates mitotic spindle orientation in hematopoietic stem cells and is essential for productive hematopoiesis. Blood Adv 5:3120–3133. https://doi.org/10.1182/bloodadvances.2020002539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Che-Mohd-Nassir CMN, Damodaran T, Yusof SR, Norazit A, Chilla G, Huen I et al (2021) Aberrant neurogliovascular unit dynamics in cerebral small vessel disease: a rheological clue to vascular parkinsonism. Pharmaceutics 2021:13. https://doi.org/10.3390/pharmaceutics13081207

    Article  CAS  Google Scholar 

  5. Cuadrado-Godia E, Dwivedi P, Sharma S, Ois Santiago A, Roquer Gonzalez J, Balcells M et al (2018) Cerebral small vessel disease: a review focusing on pathophysiology, biomarkers, and machine learning strategies. J Stroke 20:302–320. https://doi.org/10.5853/jos.2017.02922

    Article  PubMed  PubMed Central  Google Scholar 

  6. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635

    Article  CAS  PubMed  Google Scholar 

  7. Fukushima H, Yasumoto M, Ogasawara S, Akiba J, Kitasato Y, Nakayama M et al (2016) ARHGEF15 overexpression worsens the prognosis in patients with pancreatic ductal adenocarcinoma through enhancing the motility and proliferative activity of the cancer cells. Mol Cancer 15:32. https://doi.org/10.1186/s12943-016-0516-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gao J, Feng Z, Wang X, Zeng M, Liu J, Han S et al (2018) SIRT3/SOD2 maintains osteoblast differentiation and bone formation by regulating mitochondrial stress. Cell Death Differ 25:229–240. https://doi.org/10.1038/cdd.2017.144

    Article  CAS  PubMed  Google Scholar 

  9. Gao Z, Pang Z, Chen Y, Lei G, Zhu S, Li G et al (2022) Restoring after central nervous system injuries: neural mechanisms and translational applications of motor recovery. Neurosci Bull 38:1569–1587. https://doi.org/10.1007/s12264-022-00959-x

    Article  PubMed  PubMed Central  Google Scholar 

  10. Halder SK, Kant R, Milner R (2018) Chronic mild hypoxia promotes profound vascular remodeling in spinal cord blood vessels, preferentially in white matter, via an alpha5beta1 integrin-mediated mechanism. Angiogenesis 21:251–266. https://doi.org/10.1007/s10456-017-9593-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. He Y, Han Y, Liao X, Zou M, Wang Y (2022) Biology of cyclooxygenase-2: An application in depression therapeutics. Front Psychiatry 13:1037588. https://doi.org/10.3389/fpsyt.2022.1037588

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hwang JH, Cha PH, Han G, Bach TT, Min do S & Choi KY, (2015) Euodia sutchuenensis Dode extract stimulates osteoblast differentiation via Wnt/beta-catenin pathway activation. Exp Mol Med 47:e152. https://doi.org/10.1038/emm.2014.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jouvent E, Mangin JF, Porcher R, Viswanathan A, O’Sullivan M, Guichard JP et al (2008) Cortical changes in cerebral small vessel diseases: a 3D MRI study of cortical morphology in CADASIL. Brain 131:2201–2208. https://doi.org/10.1093/brain/awn129

    Article  PubMed  Google Scholar 

  14. Kallai I, Mizrahi O, Tawackoli W, Gazit Z, Pelled G, Gazit D (2011) Microcomputed tomography-based structural analysis of various bone tissue regeneration models. Nat Protoc 6:105–110. https://doi.org/10.1038/nprot.2010.180

    Article  CAS  PubMed  Google Scholar 

  15. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. https://doi.org/10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kerkhofs D, Wong SM, Zhang E, Uiterwijk R, Hoff EI, Jansen JFA et al (2021) Blood-brain barrier leakage at baseline and cognitive decline in cerebral small vessel disease: a 2-year follow-up study. Geroscience 43:1643–1652. https://doi.org/10.1007/s11357-021-00399-x

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kim K, Lee SA, Park D (2019) Emerging roles of ephexins in physiology and disease. Cells 8:17. https://doi.org/10.3390/cells8020087

    Article  CAS  Google Scholar 

  18. Kusuhara S, Fukushima Y, Fukuhara S, Jakt LM, Okada M, Shimizu Y et al (2012) Arhgef15 promotes retinal angiogenesis by mediating VEGF-induced Cdc42 activation and potentiating RhoJ inactivation in endothelial cells. PLoS ONE 7:e45858. https://doi.org/10.1371/journal.pone.0045858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li J, Shi L, Zhang K, Zhang Y, Hu S, Zhao T et al (2018) VarCards: an integrated genetic and clinical database for coding variants in the human genome. Nucleic Acids Res 46:D1039–D1048. https://doi.org/10.1093/nar/gkx1039

    Article  CAS  PubMed  Google Scholar 

  21. Li J, Zhao T, Zhang Y, Zhang K, Shi L, Chen Y et al (2018) Performance evaluation of pathogenicity-computation methods for missense variants. Nucleic Acids Res 46:7793–7804. https://doi.org/10.1093/nar/gky678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li Y, Zhao Y, Li X, Zhai L, Zheng H, Yan Y et al (2022) Biological and therapeutic role of LSD1 in Alzheimer’s diseases. Front Pharmacol 13:1020556. https://doi.org/10.3389/fphar.2022.1020556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lu DH, Hsu CC, Huang SW, Tu HJ, Huang TF, Liou HC et al (2017) ARHGEF10 knockout inhibits platelet aggregation and protects mice from thrombus formation. J Thromb Haemost 15:2053–2064. https://doi.org/10.1111/jth.13799

    Article  CAS  PubMed  Google Scholar 

  24. Mancuso M, Arnold M, Bersano A, Burlina A, Chabriat H, Debette S et al (2020) Monogenic cerebral small-vessel diseases: diagnosis and therapy. Consensus recommendations of the European Academy of Neurology. Eur J Neurol 27:909–927. https://doi.org/10.1111/ene.14183

    Article  CAS  PubMed  Google Scholar 

  25. Margolis SS, Salogiannis J, Lipton DM, Mandel-Brehm C, Wills ZP, Mardinly AR et al (2010) EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation. Cell 143:442–455. https://doi.org/10.1016/j.cell.2010.09.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marini S, Anderson CD, Rosand J (2020) Genetics of cerebral small vessel disease. Stroke 51:12–20. https://doi.org/10.1161/STROKEAHA.119.024151

    Article  PubMed  Google Scholar 

  27. Markus HS, Schmidt R (2019) Genetics of vascular cognitive impairment. Stroke 50:765–772. https://doi.org/10.1161/STROKEAHA.118.020379

    Article  PubMed  PubMed Central  Google Scholar 

  28. Matsushita T, Ashikawa K, Yonemoto K, Hirakawa Y, Hata J, Amitani H et al (2010) Functional SNP of ARHGEF10 confers risk of atherothrombotic stroke. Hum Mol Genet 19:1137–1146. https://doi.org/10.1093/hmg/ddp582

    Article  CAS  PubMed  Google Scholar 

  29. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al (2010) The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303. https://doi.org/10.1101/gr.107524.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mizuno T, Mizuta I, Watanabe-Hosomi A, Mukai M, Koizumi T (2020) Clinical and genetic aspects of CADASIL. Front Aging Neurosci 12:91. https://doi.org/10.3389/fnagi.2020.00091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nguyen AD, Nguyen TA, Zhang J, Devireddy S, Zhou P, Karydas AM et al (2018) Murine knockin model for progranulin-deficient frontotemporal dementia with nonsense-mediated mRNA decay. Proc Natl Acad Sci USA 115:E2849–E2858. https://doi.org/10.1073/pnas.1722344115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ogita H, Kunimoto S, Kamioka Y, Sawa H, Masuda M, Mochizuki N (2003) EphA4-mediated Rho activation via Vsm-RhoGEF expressed specifically in vascular smooth muscle cells. Circ Res 93:23–31. https://doi.org/10.1161/01.RES.0000079310.81429.C8

    Article  CAS  PubMed  Google Scholar 

  33. Pantoni L (2010) Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 9:689–701. https://doi.org/10.1016/S1474-4422(10)70104-6

    Article  PubMed  Google Scholar 

  34. Peters N (2022) Neurofilament light chain as a biomarker in cerebral small-vessel disease. Mol Diagn Ther 26:1–6. https://doi.org/10.1007/s40291-021-00566-y

    Article  PubMed  Google Scholar 

  35. Plotkin LI, Bellido T (2016) Osteocytic signalling pathways as therapeutic targets for bone fragility. Nat Rev Endocrinol 12:593–605. https://doi.org/10.1038/nrendo.2016.71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reckel S, Gehin C, Tardivon D, Georgeon S, Kukenshoner T, Lohr F et al (2017) Structural and functional dissection of the DH and PH domains of oncogenic Bcr-Abl tyrosine kinase. Nat Commun 8:2101. https://doi.org/10.1038/s41467-017-02313-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rock SA, Jiang K, Wu Y, Liu Y, Li J, Weiss HL et al (2022) Neurotensin regulates proliferation and stem cell function in the small intestine in a nutrient-dependent manner. Cell Mol Gastroenterol Hepatol 13:501–516. https://doi.org/10.1016/j.jcmgh.2021.09.006

    Article  CAS  PubMed  Google Scholar 

  38. Schmidt A, Hall A (2002) Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev 16:1587–1609. https://doi.org/10.1101/gad.1003302

    Article  CAS  PubMed  Google Scholar 

  39. Schurmann C, Dienst FL, Palfi K, Vasconez AE, Oo JA, Wang S et al (2019) The polarity protein Scrib limits atherosclerosis development in mice. Cardiovasc Res 115:1963–1974. https://doi.org/10.1093/cvr/cvz093

    Article  CAS  PubMed  Google Scholar 

  40. Sell GL, Schaffer TB, Margolis SS (2017) Reducing expression of synapse-restricting protein Ephexin5 ameliorates Alzheimer’s-like impairment in mice. J Clin Invest 127:1646–1650. https://doi.org/10.1172/JCI85504

    Article  PubMed  PubMed Central  Google Scholar 

  41. Song BW, Kim IK, Lee S, Choi E, Ham O, Lee SY et al (2015) 1H-pyrrole-2,5-dione-based small molecule-induced generation of mesenchymal stem cell-derived functional endothelial cells that facilitate rapid endothelialization after vascular injury. Stem Cell Res Ther 6:174. https://doi.org/10.1186/s13287-015-0170-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun LJ, Li JN, Nie YZ (2020) Gut hormones in microbiota-gut-brain cross-talk. Chin Med J (Engl) 133:826–833. https://doi.org/10.1097/CM9.0000000000000706

    Article  CAS  PubMed  Google Scholar 

  43. Takase H, Matsumoto K, Yamadera R, Kubota Y, Otsu A, Suzuki R et al (2012) Genome-wide identification of endothelial cell-enriched genes in the mouse embryo. Blood 120:914–923. https://doi.org/10.1182/blood-2011-12-398156

    Article  CAS  PubMed  Google Scholar 

  44. Tikka S, Ng YP, Di Maio G, Mykkanen K, Siitonen M, Lepikhova T et al (2012) CADASIL mutations and shRNA silencing of NOTCH3 affect actin organization in cultured vascular smooth muscle cells. J Cereb Blood Flow Metab 32:2171–2180. https://doi.org/10.1038/jcbfm.2012.123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Traylor M, Rutten-Jacobs LC, Thijs V, Holliday EG, Levi C, Bevan S et al (2016) Genetic associations with white matter hyperintensities confer risk of lacunar stroke. Stroke 47:1174–1179. https://doi.org/10.1161/STROKEAHA.115.011625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vadakumchery A, Faraidun H, Ayoubi OE, Outaleb I, Schmid V, Abdelrasoul H et al (2022) The Small GTPase RHOA Links SLP65 activation to PTEN function in Pre B Cells and is essential for the generation and survival of normal and malignant B cells. Front Immunol 13:842340. https://doi.org/10.3389/fimmu.2022.842340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Veeramah KR, Johnstone L, Karafet TM, Wolf D, Sprissler R, Salogiannis J et al (2013) Exome sequencing reveals new causal mutations in children with epileptic encephalopathies. Epilepsia 54:1270–1281. https://doi.org/10.1111/epi.12201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Viswanathan A, Gray F, Bousser MG, Baudrimont M, Chabriat H (2006) Cortical neuronal apoptosis in CADASIL. Stroke 37:2690–2695. https://doi.org/10.1161/01.STR.0000245091.28429.6a

    Article  PubMed  Google Scholar 

  49. Wells GA, Hsieh SC, Zheng C, Peterson J, Tugwell P, Liu W (2022) Risedronate for the primary and secondary prevention of osteoporotic fractures in postmenopausal women. Cochrane Database Syst Rev 5:CD04523. https://doi.org/10.1002/14651858.CD004523.pub4

    Article  Google Scholar 

  50. Whittaker E, Thrippleton S, Chong LYW, Collins VG, Ferguson AC, Henshall DE et al (2022) Systematic review of cerebral phenotypes associated with monogenic cerebral small-vessel disease. J Am Heart Assoc 11:e025629. https://doi.org/10.1161/JAHA.121.025629

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wicking M, Nees F, Steiger F (2014) Neuropsychological measures of hippocampal function. Front Neurol Neurosci 34:60–70. https://doi.org/10.1159/000356425

    Article  PubMed  Google Scholar 

  52. Yang H, Wang K (2015) Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat Protoc 10:1556–1566. https://doi.org/10.1038/nprot.2015.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang DP, Yin S, Zhang HL, Li D, Song B, Liang JX (2020) Association between intracranial arterial dolichoectasia and cerebral small vessel disease and its underlying mechanisms. J Stroke 22:173–184. https://doi.org/10.5853/jos.2019.02985

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhang Y, Wang T, Yang K, Xu J, Ren L, Li W et al (2016) Cerebral microvascular endothelial cell apoptosis after ischemia: role of enolase-phosphatase 1 activation and aci-reductone dioxygenase 1 translocation. Front Mol Neurosci 9:79. https://doi.org/10.3389/fnmol.2016.00079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zheng YS, Sun C, Wang R, Chen N, Luo SS, Xi JY et al (2021) Neurofilament light is a novel biomarker for mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes. Sci Rep 11:2001. https://doi.org/10.1038/s41598-021-81721-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (no. 82122022, 82171248 and 81873791), the Natural Science Foundation of Henan Province for Excellent Young Scholars (no. 202300410357), the Natural Science Foundation of Henan Province for Distinguished Young Scholars (no.222300420017), the Henan Province Young and Middle-Aged Health Science and Technology Innovation Talent Project (YXKC2020033), and the National Key Research and Development Program of China (2021YFC2502100 and 2021YFC2501200).

Author information

Authors and Affiliations

Authors

Contributions

XBD, XJW conceived and designed the experiments; XBD coordinated the whole project; XBD, XJW, BST, JCL were responsible for the initial assessment and diagnosing of patients; YKC, CCG, YF were responsible for assessing and documenting the patients’ information; YKC, RZ performed cell cultures; JQW, CQ, RZ, QYZ performed image analysis; HYT, RYF, HL conducted behavioral tests; DXL performed immunostaining; YKC, CCG performed WB analysis; YKC, CCG, YF performed statistical analysis; GHW, JFT provided technical support; XBD, XJW, BST, JCL participated in final data analysis and interpretation; XBD, XJW, YKC carried out most of the writing with input from other authors. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Jinchen Li, Beisha Tang or Xuejing Wang.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 9844 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, X., Chen, Y., Guo, C. et al. Mutations in ARHGEF15 cause autosomal dominant hereditary cerebral small vessel disease and osteoporotic fracture. Acta Neuropathol 145, 681–705 (2023). https://doi.org/10.1007/s00401-023-02560-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-023-02560-6

Keywords

Navigation