Skip to main content

Advertisement

Log in

Sublethal dose of 4-hydroxynonenal reduces intracellular calcium in surviving motor neurons in vivo

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

4-Hydroxynonenal (4-HNE), a major lipid peroxidation product, induces oxidative stress, acts as an autonomous effector of cell death in motor neuron hybrid cell cultures, and is elevated in the cerebrospinal fluid (CSF) of patients with amyotrophic lateral sclerosis (ALS). Elevation of the total intracellular calcium has also been demonstrated in motor axon terminals of ALS patients as well as in spinal motor neurons of animal models of familial and sporadic ALS. Since the association of intracellular calcium and oxidative stress has been suggested in ALS, the in vivo effect of intrathecally administered 4-HNE on the motor neuronal calcium level was examined in the spinal cord of rats. After 12 days of treatment, total intracellular calcium was assayed by electron microscopic histochemistry using the oxalate-pyroantimonate method. Morphology of spinal motor neurons was characterized by light and electron microscopy. In rats, 4-HNE treatment induced a mild impairment of gait, elevation of 4-HNE in the CSF, loss of spinal motor neurons, and reduction of total calcium in the surviving, structurally intact motor neurons. 4-HNE could only cause a lesion if glutathione synthesis was concomitantly inhibited in the animals. The results suggest that upstream components of the oxidative injury in relation to lipid peroxidation are necessary to compromise the glutathione system in ALS, allowing an increase of 4-HNE in the CSF, which further aggravates the primary oxidative lesion. The reduced intracellular calcium in the surviving motor neurons with no morphological features of degeneration may reflect an impaired ionic homeostasis, which may indicate a residual damage of an incomplete degenerative process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev 3:205–214

    CAS  Google Scholar 

  2. Bauer R (1988) Electron spectroscopic imaging: an advanced technique for imaging and analysis in transmission electron microscopy. Methods Microbiol 20:113–146

    Google Scholar 

  3. Blanc EM, Kelly JF, Mark RJ, Waeg G, Mattson MP (1997) 4-Hydoxynonenal, an aldehydic product of lipid peroxidation, impairs signal transduction associated with muscarinic acetylcholine and metabotropic glutamate receptors: possible action of Gαq/11. J Neurochem 69:570–580

    CAS  PubMed  Google Scholar 

  4. Borgers M, Thoné F, Neuten JM van (1981) The subcellular distribution of calcium and the effects of calcium antagonists as evaluated with a combined oxalate-pyroantimonate technique. Acta Histochem S24:327–332

    Google Scholar 

  5. Brooks BR, Sanjak M, Belden D, Juhasz-Poscine K, Waclawik A (2000) Natural history of amyotrophic lateral sclerosis—impairment, disability, handicap. In: Brown RH Jr, Meininger V, Swash M (eds) Amyotrophic lateral sclerosis. Martin Dunitz, London, pp 31–58

  6. Cheng B, McMahon DG, Mattson MP (1993) Modulation of calcium current, intracellular calcium levels and cell survival by glucose deprivation and growth factors in hippocampal neurons. Brain Res 607:275–285

    Article  CAS  PubMed  Google Scholar 

  7. Connor JA, Razani-Boroujerdi S, Greenwood AC (1999) Reduced voltage-dependent Ca2+ signaling in CA1 neurons after brief ischemia in gerbils. J Neurophysiol 81:299–306

    CAS  PubMed  Google Scholar 

  8. Delesse M (1847) Procédé mécanique pour determiner la composition des roches. C R Acad Sci Paris 25:544–545

    Google Scholar 

  9. Domoki F, Bari F, Nagy K, Busija DW, Siklós L (2004) Diazoxide prevents mitochondrial swelling and Ca2+ accumulation in CA1 pyramidal cells after cerebral ischemia in newborn pigs. Brain Res 1019:97–104

    Article  CAS  PubMed  Google Scholar 

  10. Dux E, Mies G, Hossmann KA, Siklós L (1987) Calcium in the mitochondria following brief ischemia of gerbil brain. Neurosci Lett 78:295–300

    Article  CAS  PubMed  Google Scholar 

  11. Eichler ME, Dubinsky JM, Rich KM (1992) Relationship of intracellular calcium to dependence on nerve growth factor in dorsal root ganglion neurons in cell culture. J Neurochem 58:263–269

    CAS  PubMed  Google Scholar 

  12. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

    CAS  PubMed  Google Scholar 

  13. Grohovaz F, Bossi M, Pezzati R, Meldolesi J, Torri Tarelli F (1996) High resolution ultrastructural mapping of total calcium: spectroscopic imaging/electron energy loss spectroscopy analysis of a physically/chemically processed nerve-muscle preparation. Proc Natl Acad Sci USA 93:4799–4803

    Article  CAS  PubMed  Google Scholar 

  14. Guimaraes CA, Linden R (2004) Programmed cell death. Apoptosis and alternative death styles. Eur J Biochem 271:1638–1650

    Google Scholar 

  15. Gundersen HJG (1986) Stereology of arbitrary particles. A review of unbiased number and size estimation and the presentation of some new ones, in memory of William R. Thompson. J Microsc 143:3–45

    PubMed  Google Scholar 

  16. Gundersen HJG, Jensen EB (1987) The efficiency of systematic sampling in stereology and its predictions. J Microsc 147:229–263

    PubMed  Google Scholar 

  17. Jellinger KA (2001) Cell death mechanisms in neurodegeneration. J Cell Mol Med 5:1–17

    CAS  PubMed  Google Scholar 

  18. Keller JN, Hanni KB, Markesbery WR (1999) 4-Hydroxynonenal increases neuronal susceptibility to oxidative stress. J Neurosci Res 58:823–830

    Article  CAS  PubMed  Google Scholar 

  19. Körtje KH, Körtje D (1992) The application of electron spectroscopic imaging for quantification of the area fractions of calcium-containing precipitates in nervous tissue. J Microsc 166:343–358

    PubMed  Google Scholar 

  20. Kruman I, Bruce-Keller AJ, Bredesen D, Waeg G, Mattson MP (1997) Evidence that 4-hydroxynonenal mediates oxidative stress-induced neuronal apoptosis. J Neurosci 17:5089–5100

    CAS  PubMed  Google Scholar 

  21. Kruman II, Pedersen WA, Springer JE, Mattson MP (1999) ALS-linked Cu/Zn-SOD mutation increases vulnerability of motor neurons to excitotoxicity by a mechanism involving increased oxidative stress and perturbed calcium homeostasis. Exp Neurol 160:28–39

    Article  CAS  PubMed  Google Scholar 

  22. Malecki A, Garrido R, Mattson MP, Henning B, Toborek M (2000) 4-hydroxynonenal induces oxidative stress and death of cultured spinal cord neurons. J Neurochem 74:2278–2287

    Article  CAS  PubMed  Google Scholar 

  23. Mata M, Staple J, Fink DJ (1986) Changes in intra-axonal calcium distribution following nerve crush. J Neurobiol 17:449–467

    CAS  PubMed  Google Scholar 

  24. Mattson MP (1998) Free radicals, calcium, and the synaptic plasticity—cell death continuum: emerging roles of transcription factor NFκB. Int Rev Neurobiol 42:103–168

    CAS  PubMed  Google Scholar 

  25. Maxwell MH (1978) Two rapid and simple methods used for removal of resins from 1.0 μm thick epoxy sections. J Microsc 112:253–255

    CAS  PubMed  Google Scholar 

  26. Mayhew TM (1992) A review of recent advances in stereology for quantifying neural structure. J Neurocytol 21:313–328

    Article  CAS  PubMed  Google Scholar 

  27. Pellegrini-Giampietro DE, Zukin RS, Bennett MVL, Cho S, Pulsinelly WA (1992) Switch in glutamate receptor subunit gene expression in CA1 subfield of hippocampus following global ischemia in rats. Proc Natl Acad Sci USA 89:10499–10503

    CAS  PubMed  Google Scholar 

  28. Perry G, Nunomura A, Lucassen P, Lassmann H, Smith MA (1998) Apoptosis and Alzheimer’s disease. Science 282:1265

    Article  Google Scholar 

  29. Perry G, Nunomura A, Smith MA (1998) A suicide note from Alzheimer disease neurons? Nat Med 4:897–898

    Article  CAS  PubMed  Google Scholar 

  30. Pullen AH, Demestre M, Howard RS, Orrell RW (2004) Passive transfer of purified IgG from patients with amyotrophic lateral sclerosis to mice results in degeneration of motor neurons accompanied by Ca2+ enhancement. Acta Neuropthol 107:35–46

    Article  CAS  Google Scholar 

  31. Raina AK, Hochman A, Zhu Y, Rottkamp CA, Nunomura A, Siedlak SL, Boux H, Castellani RJ, Perry G, Smith MA (2001) Abortive apoptosis in Alzheimer’s disease. Acta Neuropathol 101:305–310

    CAS  PubMed  Google Scholar 

  32. Reaume AG, Elliott JL, Hoffmann EK, Kowall NW, Ferrante RJ, Siwek DF, Wilcox HM, Flood DG, Beal MF, Brown Jr RH, Scott RW, Snider WD (1996) Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 13:43–47

    Article  CAS  PubMed  Google Scholar 

  33. Reimer L, Fromm I, Rennekamp R (1988) Operation modes of electron spectroscopic imaging and electron energy-loss spectroscopy in a transmission electron microscope. Ultramicroscopy 24:339–354

    Article  Google Scholar 

  34. Richardson KC, Jarett L, Finke EH (1960) Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol 35:313–323

    CAS  PubMed  Google Scholar 

  35. Rowland LP, Shneider NA (2001) Amyotrophic lateral sclerosis. N Engl J Med 344:1688–1700

    Article  CAS  PubMed  Google Scholar 

  36. Siklós L, Engelhardt JI, Alexianu ME, Gurney ME, Siddique T, Appel SH (1998) Intracellular calcium parallels motor neuron degeneration in SOD-1 mutant mice. J Neuropathol Exp Neurol 57:571–587

    PubMed  Google Scholar 

  37. Siklós L, Engelhardt JI, Reaume AG, Scott RW, Adalbert R, Obál I, Appel SH (2000) Altered calcium homeostasis in spinal motor neurons but not in oculomotor neurons of SOD-1 knockout mice. Acta Neuropathol 99:517–524

    Article  PubMed  Google Scholar 

  38. Simpson EP, Henry YK, Henkel JS, Smith RG, Appel SH (2004) Increased lipid peroxidation in sera of ALS patients. A potential biomarker of disease burden. Neurology 62:1758–1765

    CAS  PubMed  Google Scholar 

  39. Smith RG, Henry YK, Mattson MP, Appel SH (1998) Presence of 4-hydroxynonenal in cerebrospinal fluid of patients with sporadic amyotrophic lateral sclerosis. Ann Neurol 44:696–699

    Article  CAS  PubMed  Google Scholar 

  40. Smith RG, Henry YK, Barrett C, Rodriguez GP, Appel SH (2000) Lumbosacral intrathecal 4-hydroxynonenal injection induces spinal motor injury only after local inhibition of glutathione synthase. Neurology 54 [Suppl 3]:A305

  41. Sterio DC (1984) The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc 134:127–136

    PubMed  Google Scholar 

  42. Swash M, Schwartz MS (1995) Motor neuron disease: The clinical syndrome. In: Leigh PN, Swash M (eds) Motor neuron disease. Springer, London, pp 1–17

  43. Wietholter H, Eckert S, Stevens A (1990) Measurement of atactic and parietic gait in neuropathies of rats based on analysis of walking tracks. J Neurosci Methods 32:199–205

    Article  CAS  PubMed  Google Scholar 

  44. Yu SP, Canzoniero LMT, Choi DW (2001) Ion homeostasis and apoptosis. Curr Opin Cell Biol 13:405–411

    Article  CAS  PubMed  Google Scholar 

  45. Yuan J, Lipinski M, Degterev A (2003) Diversity in the mechanisms of neuronal cell death. Neuron 40:401–413

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Part of the results has been presented at the 52nd Annual Meeting of the American Academy of Neurology, San Diego, 29 April–6 May 2000. This work was supported by grants from OTKA (T/034314, T/042858, M/036252), ETT (33/2003) and MDA. The valuable help of Dr. David Beers in editing the manuscript is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Siklós.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vigh, L., Smith, R.G., Soós, J. et al. Sublethal dose of 4-hydroxynonenal reduces intracellular calcium in surviving motor neurons in vivo. Acta Neuropathol 109, 567–575 (2005). https://doi.org/10.1007/s00401-004-0977-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-004-0977-1

Keywords

Navigation