Skip to main content
Log in

Altering of lower critical solution temperature of environmentally responsive poly (N-isopropylacrylamide-co-acrylic acid-co-vanillin acrylate) affected by acrylic acid, vanillin acrylate, and post-polymerization modification

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

For the improvement of poly (N-isopropylacrylamide) properties, new series of poly (N-isopropylacrylamide-Co-acrylic acid-Co-vanillin acrylate) terpolymer was fabricated with molar concentrations 5, 10, and 15 mol% of acrylic acid (AA) with 10 mol% of vanillin acrylate (VA). Monomer and polymers were chemically evaluated using (1H NMR, 13C, FT-IR, and UV); all structures emphasized logical results. The post-polymerization has been done for terpolymer with tryptophan and threonine; they were chemically investigated. Polymers and post-polymers have been physically characterized using SEM, X-ray, DSC, TGA, and SEM. Lower critical solution temperature was measured using turbidity by UV–VIS spectroscopy and by micro-DSC. These polymers will be used in the post-polymerization of many biomolecules for biomedical applications

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abdelaty MSA (2021) Trends in the phase separation temperature optimization of a functional and thermo-pH responsive terpolymer of poly (N-isopropylacrylamide-co-N-(2-(dimethylamino)ethyl) acrylamide-co-vanillin acrylate). J Polym Environ. https://doi.org/10.1007/s10924-021-02096-4

    Article  Google Scholar 

  2. Liang H, Qiang Z, Xue L, Michael JS (2019) Stimuli-responsive polymers for sensing and actuation. Mater Horiz 6:1774–1793. https://doi.org/10.1039/C9MH00490D

    Article  Google Scholar 

  3. Seidi F, Jenjob R, Crespy D (2018) Designing smart polymer conjugates for controlled release of payloads. Chem Rev 11:3965–4036. https://doi.org/10.1021/acs.chemrev.8b00006

    Article  CAS  Google Scholar 

  4. Xiaoming H, Chen Z, Yufu T, Feng L, Yuanyuan L, Feng P, Xiaomei L, Yu J, Jie L, Wenjun W, Quli F, Wei H (2019) Intelligent polymer–MnO2 nanoparticles for dual-activatable photoacoustic and magnetic resonance bimodal imaging in living mice. Chem Commun 55:6006–6009. https://doi.org/10.1039/C9CC02148E

    Article  Google Scholar 

  5. Abdelaty MSA (2018) Poly(N-isopropylacrylamide-co-2-((diethylamino)methyl)-4 formyl-6-methoxyphenylacrylate) environmental functional copolymers: synthesis, characterizations, and grafting with amino acids. Biomolecules 8:138. https://doi.org/10.3390/biom8040138

  6. Abdelaty MSA (2018) Environmental functional photo-cross-linked hydrogel bilayer thin films from vanillin. J Polym Environ 26:2243–2256. https://doi.org/10.1007/s10924-017-1126-y

    Article  CAS  Google Scholar 

  7. Abdelaty MSA (2018) Preparation and characterization of new environmental functional polymers based on vanillin and N-isopropylacrylamide for post polymerization. J Polym Environ 26:636–646. https://doi.org/10.1007/s10924-017-0960-2

    Article  CAS  Google Scholar 

  8. Chen J-K, Chang C-J (2014) Fabrication and applications of stimuli-responsive polymer films and patterns on surface. Materials 7:805–875. https://doi.org/10.3390/ma7020805

    Article  PubMed  PubMed Central  Google Scholar 

  9. Richard H (2014) Temperature-responsive polymers: properties, synthesis, and applications, chapter 2, 13–44. https://doi.org/10.1016/B978-0-08-102416-4.00002-8

  10. Kocak G, Tuncer C, Bütün V (2017) pH-Responsive polymers. Polym Chem 8:144–176. https://doi.org/10.1039/C6PY01872F

    Article  CAS  Google Scholar 

  11. Tao X, Ting L, Wei-Feng Z, Cheng-Sheng Z (2019) Ionic-strength responsive Zwitterionic copolymer hydrogels with tunable swelling and adsorption behaviors. Langmuir 35(5):1146–1155

    Article  Google Scholar 

  12. Shohei I, Miki M, Hironobu K, Yoshitsugu H, Shokyoku K (2019) Swelling and mechanical properties of thermo-responsive/hydrophilic conetworks with crosslinked domain structures prepared from various triblock precursors. Polym Chem Advance Article. https://doi.org/10.1039/C9PY01417A

  13. Valentina M, Pierfrancesco C, Marta G, Bartosz T, Veronica A (2017) Light-responsive polymer micro- and nano-capsules. Polymers 9:1–19. https://doi.org/10.3390/polym9010008

    Article  CAS  Google Scholar 

  14. Chikara K, Akihiro K, Kenji U, Toshikazu T, Masatoshi K, Kohzo I (2013) Pressure-responsive polymer membranes of slide-ring gels with movable cross-links. Advanced material 6:4636–4640. https://doi.org/10.1002/adma.201301252

    Article  CAS  Google Scholar 

  15. Gil ES, Hudson SM (2004) Stimuli-responsive polymers and their bioconjugates. Prog Polym Sci 29:1173–1222. https://doi.org/10.1016/j.progpolymsci.2004.08.003

    Article  CAS  Google Scholar 

  16. Shibayama M, Tanaka T (1993) Volume phase transition and related phenomena of polymer gels. Adv Polym Sci 109:1–62. https://doi.org/10.1007/3-540-56791-7-1

    Article  CAS  Google Scholar 

  17. Chen G, Hoffman AS (1995) Graft copolymers that exhibit temperature-induced phase transition over a wide range of pH. Nature 373:49–52. https://doi.org/10.1038/373049a0

    Article  CAS  PubMed  Google Scholar 

  18. Hoffman AS, Stayton PS, Bulmus V (2000) Really smart bioconjugates of smart polymers and receptor proteins). J Biomed Mater Res 52:577–586. https://doi.org/10.1002/1097-4636(20001215)52

    Article  CAS  PubMed  Google Scholar 

  19. Costa E, Coelho M, Ilharco LM, Aguiar-Ricardo A, Hammond PT (2011) Tannic acid mediated suppression of PNIPAAm microgels thermoresponsive behaviour. Macromolecules 44:612–621. https://doi.org/10.1021/ma1025016

    Article  CAS  Google Scholar 

  20. Yang HW, Chena JK, Cheng CC, Kuo SW (2013) Association of poly(N-isopropylacrylamide) containing nucleobase multiple hydrogen bonding of adenine for DNA recognition. Appl Surf Sci 271:60–69. https://doi.org/10.1016/j.apsusc.2013.01.074

    Article  CAS  Google Scholar 

  21. Jan S, Seema A (2013) Polymers with upper critical solution temperature in aqueous solution: unexpected properties from known building blocks. ACS Macro Lett 7:597–600. https://doi.org/10.1021/mz400227y

    Article  CAS  Google Scholar 

  22. Sonia L, Elaine A (2017) Poly(N-isopropylacrylamide) and copolymers: a review on recent progresses in biomedical applications. Gels 3:1–32. https://doi.org/10.3390/gels3040036

    Article  CAS  Google Scholar 

  23. Kocak G, Tuncera C, Bütün V (2017) pH-Responsive polymers. Polym Chem 8:144–176. https://doi.org/10.1039/C6PY01872F

    Article  CAS  Google Scholar 

  24. Katchalsky A, Eisenberg H (1951) J Polym Sci 6:145–154

    Article  CAS  Google Scholar 

  25. Thomas S, Linda S, Mark G, Stephen R (2016) The pH-responsive behaviour of poly(acrylic acid) in aqueous solution is dependent on molar mass. Soft Matter 12:2542. https://doi.org/10.1039/c5sm02693h

    Article  CAS  Google Scholar 

  26. Chen D, Liu H, Kobayashib T, Yu H (2010) Multiresponsive reversible gels based on a carboxylic azo polymer. J Mater Chem 20:3610–3614. https://doi.org/10.1039/B925163D

    Article  CAS  Google Scholar 

  27. Pasparakisa G, Vamvakaki M (2011) Multiresponsive polymers: nano-sized assemblies, stimuli-sensitive gels and smart surfaces. Polym Chem 2:1234

    Article  Google Scholar 

  28. George P, Maria V (2011) Multiresponsive polymers: nano-sized assemblies, stimuli-sensitive gels and smart surfaces. Polym Chem 2:1234–1248

    Article  Google Scholar 

  29. Yajie L, Chaocan Z, Youliang Z, Yixiao D, Wanyu C (2015) Novel multi-responsive polymer materials: when ionic liquids step in. Euro polym j 69:441–448. https://doi.org/10.1016/j.eurpolymj.2015.05.023

    Article  CAS  Google Scholar 

  30. Sebastian H, Torsten R, Hendrik B, Sebastian S (2014) Multiresponsive polymer hydrogels by orthogonal supramolecular chain cross-linking. Macromolecules 47(12):4028–4036. https://doi.org/10.1021/ma5008573

    Article  CAS  Google Scholar 

  31. Hossein H, Soleyman H, Shahryar P, Naser G, Rohollah M (2019) Synthesis of multiresponsive β-cyclodextrin nanocomposite through surface RAFT polymerization for controlled drug delivery. Polymers advanced technologies 30:2860–2871. https://doi.org/10.1002/pat.4718

    Article  CAS  Google Scholar 

  32. Ramkissoon-Ganorkar C, Baudys M, Wan Kim S (2000) Effect of ionic strength on the loading efficiency” of the model polypeptide/protein drugs in pH-/temperature-sensitive polymers. J Biomat Sci Polym Ed 11:45–54 (PMID: 10680607)

    Article  CAS  Google Scholar 

  33. Ju HK, Kim SY, Kim SJ, Lee YM (2002) pH/temperature-responsive semi-IPN hydrogels composed of alginate and poly(N-isopropylacrylamide. J Appl Polym Sci 11:28–1139. https://doi.org/10.1002/app.10137

    Article  Google Scholar 

  34. Abdelaty MSA (2021) Poly(N-isopropylacrylamide-co-2-((diethylamino)methyl)-4-methylphenyl acrylate) thermo-ph responsive copolymer: trend in the lower critical solution temperature optimization of Poly (N-isopropyylacrylamide). J Polym Res 28:213. https://doi.org/10.1007/s10965-021-02574-2

    Article  CAS  Google Scholar 

  35. Abdelaty MSA (2019) Influence of vanillin acrylate and 4-acetylphenyl acrylate hydrophobic functional monomers on phase separation of N-isopropylacrylamide environmental terpolymer: fabrication and characterization. Polym Bull. https://doi.org/10.1007/s00289-019-02890-0

  36. Abdelaty MSA (2018) Environmental functional photo-cross-linked hydrogel bilayer thin films from vanillin (part 2): temperature responsive layer A, functional, temperature and ph layer B. Polym Bull 11:4837–4858. https://doi.org/10.1007/s00289-018-2297-y

    Article  CAS  Google Scholar 

  37. Abdelaty MSA (2018) Preparation and functional, temperature and ph layer poly(styrene-Co-2-[(diethylamino)methyl]-4-formyl-6-methoxy-phenyl acrylate) copolymers for amino acid post polymerization. Open J Org Polym Mater 8:41–55. https://doi.org/10.4236/ojpchem.2018.83005

    Article  CAS  Google Scholar 

  38. Abdelaty MSA, Kuckling D (2018) Poly (N-isopropyl acrylamide-Co-vanillin acrylate) dual responsive functional copolymers for grafting biomolecules by Schiff’s base click reaction. Open J Org Polym Mater 8:15–32. https://doi.org/10.4236/ojopm.2018.82002

    Article  CAS  Google Scholar 

  39. Abdelaty, MSA (2019) Layer by layer photo-cross-linked environmental functional hydrogel thin films based on vanillin: part 3. J Polym Environ. https://doi.org/10.1007/s10924-019-01421-2

  40. Abdelaty MSA, Kuckling D (2016) Synthesis and characterization of new functional photo cross-linkable smart polymers containing vanillin derivatives. Gels 2:1–13. https://doi.org/10.3390/gels2010003

    Article  CAS  Google Scholar 

  41. Yeong-Tarng S, Pei-Yi L, Shiao-Wei K (2018) Sequence length distribution affects the lower critical solution temperature, glass transition temperature, and CO2-responsiveness of N-isopropylacrylamide/methacrylic acid copolymers. Polymer 143:258–270. https://doi.org/10.1016/j.polymer.2018.04.002

    Article  CAS  Google Scholar 

  42. Yeong-Tarng S, Bo-Hong C, Tzong-Liu W, Shiao-Wei K (2017) Supercritical CO2 affects the copolymerization, LCST behavior, thermal properties, and hydrogen bonding interactions of poly(N-isopropylacrylamide-co-acrylic acid). The Journal of Supercritical Fluids 130:373–380. https://doi.org/10.1016/j.supflu.2017.07.004

    Article  CAS  Google Scholar 

  43. Yeong-Tarng S, Pei-Yi L, Tao, C,; Shiao-Wei, K, (2016) Temperature-, pH- and CO2-sensitive poly(N-isopropylacryl amide-co-acrylic acid) copolymers with high glass transition temperatures. Polymers 8(12):434. https://doi.org/10.3390/polym8120434

    Article  CAS  Google Scholar 

  44. Abdelaty MSA (2021) A facile method for the preparation of hydrophilic-hydrophobic functional thermo-pH responsive terpolymers based on poly(NIPAAm-co-DMAA-co-DMAMVA) and post-polymerization J Polym Environ. https://doi.org/10.1007/s10924-021-02117-2

  45. Aditya J, Nandi D, Chester A, Marie M (2018) Study of Poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAM) microgel particle induced deformations of tissue-mimicking phantom by ultrasound stimulation. Langmuir 34:1457–1465. https://doi.org/10.1021/acs.langmuir.7b02801

    Article  CAS  Google Scholar 

  46. Fache M, Darroman E, Besse V, Auvergne R, Sylvain Caillol S, Boutevina., B. (2014) Vanillin, a promising biobased building-block for monomer synthesis. Green Chem 16:1987–1998. https://doi.org/10.1039/C3GC42613K

    Article  CAS  Google Scholar 

  47. Ananda SA, Bernard W, Ashfaqur R (2012) Vanillin based polymers: I. An electrochemical route to polyvanillin. Green Chem 14:2395–2397. https://doi.org/10.1039/C2GC35645G

    Article  Google Scholar 

  48. Firdaus MM, Meier AR (2013) Renewable copolymers derived from vanillin and fatty acid derivatives. Eur Polym J 49:156–166. https://doi.org/10.1016/j.eurpolymj.2012.10.017

    Article  CAS  Google Scholar 

  49. Abdelaty MSA, (2019) Layer by layer photo-cross-linked environmental functional hydrogel thin films based on vanillin: part 3. J Polym Environ 3. https://doi.org/10.1007/s10924-019-01421-2

  50. Sun H, Gao C (2010) Facile synthesis of multiamino vinyl poly (amino acid)s for promising bioapplications. Biomacromol 11:3609–3616. https://doi.org/10.1021/bm101060m

    Article  CAS  Google Scholar 

  51. Bauri K, Roy SG, Pant S, De P (2013) Controlled synthesis of amino acid-based pH-responsive chiral polymers and self-assembly of their block copolymers. Langmuir 29:2764–2774. https://doi.org/10.1021/la304918s

    Article  CAS  PubMed  Google Scholar 

  52. Saswati GR, Priyadarsi D (2014) pH responsive polymers with amino acids in the side chains and their potential applications. J Appl Polym Sci 41084:1–12. https://doi.org/10.1002/APP.410

    Article  Google Scholar 

  53. Vincent L, Alexandre C, Mona S, Steven PA (2013) Synthesis and characterization of poly(amino acid)-stabilized diblock copolymer nano-objects. J Name 00:1–3. https://doi.org/10.1039/x0xx00000x

    Article  CAS  Google Scholar 

  54. Hideharu M, Ikumi K, Shoko S, Takeshi E (2010) Proline-based block copolymers displaying upper and lower critical solution temperatures. Macromolecules 43:1289–1298. https://doi.org/10.1021/ma902002b

    Article  CAS  Google Scholar 

  55. Shimazaki Y, Takani M, Yamauchi O (2009) Metal complexes of amino acids and amino acid side chain groups Structures and properties. Dalton Trans 14:7854–7869. https://doi.org/10.1039/b905871k7854

    Article  Google Scholar 

  56. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliver Rev 53:321–339. PII: S0169–409X(01)00203–4

  57. Bauri K, Nandi M, De P (2018) Amino acid-derived stimuli-responsive polymers and their applications. Polym Chem 9:1257–1287. https://doi.org/10.1039/C7PY02014G

    Article  CAS  Google Scholar 

  58. Swagatam B, Mohini MK, Sandip S, Jayanta H (2019) Amino acid conjugated polymers: antibacterial agents effective against drug-resistant Acinetobacter baumannii with no detectable resistance. ACS Appl Mater Interfaces 11(37):33559–33572. https://doi.org/10.1021/acsami.9b09016

    Article  CAS  Google Scholar 

  59. Xin Y, Yuan J (2012) Schiff’s base as a stimuli-responsive linker in polymer chemistry. Polym Chem 3:3045–3055. https://doi.org/10.1002/pc.22327

    Article  CAS  Google Scholar 

  60. McKay CS, Finn MG (2014) Click chemistry in complex mixtures: bioorthogonal bioconjugation. Chem Biol 21:1075–1101. https://doi.org/10.1016/j.chembiol.2014.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Junpeng X, Yi L, Shan-hui H (2019) Hydrogels based on Schiff base linkages for biomedical applications. Molecules 24:3005. https://doi.org/10.3390/molecules24163005

    Article  CAS  Google Scholar 

  62. Trask RS, Williams HR, Bond IP (2007) Self-healing polymer composites: mimicking nature to enhance performance. Bioinspir Biomim 2:1–9. https://doi.org/10.1088/1748-3182/2/1/P01

    Article  CAS  Google Scholar 

  63. Zhang Z, He C, Chen X (2018) Hydrogels based on pH-responsive reversible carbon–nitrogen double-bond linkages for biomedical applications. Mater Chem Front 2:1765–1778. https://doi.org/10.1039/C8QM00317C

    Article  CAS  Google Scholar 

  64. Huang J, Deng Y, Ren J, Chen G, Wang G, Wang F, Wu X (2018) Novel in situ forming hydrogel based on xanthan and chitosan re-gelifying in liquids for local drug delivery. Carbohydr Polym 186:54–63. https://doi.org/10.1016/j.carbpol.2018.01.025

    Article  CAS  PubMed  Google Scholar 

  65. Zhao X, Wu H, Guo BL, Dong RN, Qiu YS, Ma PX (2017) Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 122:34–47. https://doi.org/10.1016/j.biomaterials.2017.01.011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Paderborn University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Momen S. A. Abdelaty.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelaty, M.S.A., Kuckling, D. Altering of lower critical solution temperature of environmentally responsive poly (N-isopropylacrylamide-co-acrylic acid-co-vanillin acrylate) affected by acrylic acid, vanillin acrylate, and post-polymerization modification. Colloid Polym Sci 299, 1617–1629 (2021). https://doi.org/10.1007/s00396-021-04882-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04882-x

Keywords

Navigation